The Route of Lignin Biodegradation for Its Valorization

Author(s):  
Weihua Qiu
BioResources ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1940-1948
Author(s):  
Zahid Majeed ◽  
Zainab Ajab ◽  
Qingjie Guan ◽  
Abdul Zahir Abbasi ◽  
Qaisar Mahmood ◽  
...  

This study characterized the lignin peroxidase (LiP) activity of soil via an enzyme assay to determine the reaction rates and activation energies for 5 wt%, 10 wt%, 15 wt%, and 20 wt% lignin loads in urea crosslinked starch biocomposites. The results revealed that a mixed mode of LiP inhibition occurred after the soil was mixed with these biocomposites with different loads of lignin. Loading of lignin at 5 wt% and 10 wt% lignin resulted in higher values of catalytic activity of LiP: -39.58 and 49.14 µM h-1 g-1 soil, respectively. In comparison, with higher loading of lignin at 15 wt% and 20 wt%, decreases in the catalytic activity of LiP were found and were 28.72 to 37.25 µM h-1 g-1 soil, respectively. The activation energy of LiP increased approximately 1.11- to 1.22-fold when 15 and 20 wt% of lignin was loaded in biocomposites. Research findings established the possibility of unfavorable binding of the LiP to lignin with an increase in the load of lignin, possibly due to the complex structure of intact lignin and presence of inhibitory biodegradation products of lignin accumulates during lignin biodegradation in biocomposites. It was concluded that higher lignin contents (15 wt% and 20 wt%) were effective in reducing the activity of the soil LiP. Hence, higher lignin content possibly protects against losses of lignin, while acting as a filler in the formulation of biocomposites.


1977 ◽  
Vol 23 (4) ◽  
pp. 434-440 ◽  
Author(s):  
Don L. Crawford ◽  
Suellen Floyd ◽  
Anthony L. Pometto III ◽  
Ronald L. Crawford

The comparative rates of microbial degradation 14C-lignin-labeled lignocelluloses and 14C-Kraft lignins were investigated using selected soil and water samples as sources of microorganisms. Natural lignocelluloses containing 14C primarily in their lignin components were prepared by feeding plants uniformly labeled L-[14C]phenylalanine through their cut stems. 14C-Kraft lignins were prepared by pulping lignin-labeled lignocelluloses. Rates of lignin biodegradation were determined by monitoring 14CO2 evolution from incubation mixtures over incubation periods of up to 1000 h. Observed rates of lignin degradation were slow in all cases. Kraft lignins appeared more resistant to microbial attack than natural lignins, even though they were decomposed more rapidly during the first 100–200 h of incubation. Similar degradation patterns were observed in both soil and water. Individual samples, however, varied greatly in their overall rates of degradation of either lignin type. A Kraft-lignin preparation was separated into a variety of molecular weight fractions by column chromatography on LH-20 Sephadex and the biodegradability of the different molecular weight fractions determined. The lower molecular weight fractions of the Kraft lignin were decomposed at a significantly faster rate by the microflora of soil than were the fractions of higher molecular weight.


1985 ◽  
Vol 229 (1) ◽  
pp. 277-279 ◽  
Author(s):  
K Lundquist ◽  
P Kristersson

Laccase-catalysed oxidation of the lignin-related phenol vanillyl glycol results in the initial formation of dimers and subsequent polymerization. The polymerization is accompanied by a liberation of methanol corresponding to 15-20% demethylation. Visible spectra together with reduction experiments suggest the simultaneous formation of o-quinones. The participation of quinone formation in the polymerization process and the possible role of such intermediates in lignin biodegradation is discussed.


Genetics provides an approach to the analysis of the complex function of lignin biodegradation, through the isolation of mutants and the creation of gene libraries for the identification of genes and their products. However, white-rot fungi (for example, Phanerochaete chrysosporium ) have not so far been analysed from this point of view, and there is the challenge of establishing such genetics. P. chrysosporium is convenient experimentally because relatively few genes are switched on at the onset of ligninolytic activity. We describe the isolation of clones carrying genes expressed specifically in the ligninolytic phase, the development of a general strategy for mapping such clones, and the elucidation of the mating system of this organism. Another objective is the development of methods for transforming DNA into P. chrysosporium . This would allow the use of site-directed mutagenesis to analyse the functioning of ligninases, and the control of expression of the corresponding genes. The use of genetic crosses for strain improvement and the identification of components of the system are also discussed.


Author(s):  
Jussi Kontro ◽  
Riku Maltari ◽  
Joona Mikkilä ◽  
Mika Kähkönen ◽  
Miia R. Mäkelä ◽  
...  

Utilization of lignin-rich side streams has been a focus of intensive studies recently. Combining biocatalytic methods with chemical treatments is a promising approach for sustainable modification of lignocellulosic waste streams. Laccases are catalysts in lignin biodegradation with proven applicability in industrial scale. Laccases directly oxidize lignin phenolic components, and their functional range can be expanded using low-molecular-weight compounds as mediators to include non-phenolic lignin structures. In this work, we studied in detail recombinant laccases from the selectively lignin-degrading white-rot fungus Obba rivulosa for their properties and evaluated their potential as industrial biocatalysts for the modification of wood lignin and lignin-like compounds. We screened and optimized various laccase mediator systems (LMSs) using lignin model compounds and applied the optimized reaction conditions to biorefinery-sourced technical lignin. In the presence of both N–OH-type and phenolic mediators, the O. rivulosa laccases were shown to selectively oxidize lignin in acidic reaction conditions, where a cosolvent is needed to enhance lignin solubility. In comparison to catalytic iron(III)–(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation systems, the syringyl-type lignin units were preferred in mediated biocatalytic oxidation systems.


Sign in / Sign up

Export Citation Format

Share Document