scholarly journals Integrated Commonsense Reasoning and Deep Learning for Transparent Decision Making in Robotics

Author(s):  
Tiago Mota ◽  
Mohan Sridharan ◽  
Aleš Leonardis
2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Tiago Mota ◽  
Mohan Sridharan ◽  
Aleš Leonardis

AbstractA robot’s ability to provide explanatory descriptions of its decisions and beliefs promotes effective collaboration with humans. Providing the desired transparency in decision making is challenging in integrated robot systems that include knowledge-based reasoning methods and data-driven learning methods. As a step towards addressing this challenge, our architecture combines the complementary strengths of non-monotonic logical reasoning with incomplete commonsense domain knowledge, deep learning, and inductive learning. During reasoning and learning, the architecture enables a robot to provide on-demand explanations of its decisions, the evolution of associated beliefs, and the outcomes of hypothetical actions, in the form of relational descriptions of relevant domain objects, attributes, and actions. The architecture’s capabilities are illustrated and evaluated in the context of scene understanding tasks and planning tasks performed using simulated images and images from a physical robot manipulating tabletop objects. Experimental results indicate the ability to reliably acquire and merge new information about the domain in the form of constraints, preconditions, and effects of actions, and to provide accurate explanations in the presence of noisy sensing and actuation.


2019 ◽  
Vol 33 (3) ◽  
pp. 89-109 ◽  
Author(s):  
Ting (Sophia) Sun

SYNOPSIS This paper aims to promote the application of deep learning to audit procedures by illustrating how the capabilities of deep learning for text understanding, speech recognition, visual recognition, and structured data analysis fit into the audit environment. Based on these four capabilities, deep learning serves two major functions in supporting audit decision making: information identification and judgment support. The paper proposes a framework for applying these two deep learning functions to a variety of audit procedures in different audit phases. An audit data warehouse of historical data can be used to construct prediction models, providing suggested actions for various audit procedures. The data warehouse will be updated and enriched with new data instances through the application of deep learning and a human auditor's corrections. Finally, the paper discusses the challenges faced by the accounting profession, regulators, and educators when it comes to applying deep learning.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Steven A. Hicks ◽  
Jonas L. Isaksen ◽  
Vajira Thambawita ◽  
Jonas Ghouse ◽  
Gustav Ahlberg ◽  
...  

AbstractDeep learning-based tools may annotate and interpret medical data more quickly, consistently, and accurately than medical doctors. However, as medical doctors are ultimately responsible for clinical decision-making, any deep learning-based prediction should be accompanied by an explanation that a human can understand. We present an approach called electrocardiogram gradient class activation map (ECGradCAM), which is used to generate attention maps and explain the reasoning behind deep learning-based decision-making in ECG analysis. Attention maps may be used in the clinic to aid diagnosis, discover new medical knowledge, and identify novel features and characteristics of medical tests. In this paper, we showcase how ECGradCAM attention maps can unmask how a novel deep learning model measures both amplitudes and intervals in 12-lead electrocardiograms, and we show an example of how attention maps may be used to develop novel ECG features.


2020 ◽  
Vol 114 ◽  
pp. 242-245
Author(s):  
Jootaek Lee

The term, Artificial Intelligence (AI), has changed since it was first coined by John MacCarthy in 1956. AI, believed to have been created with Kurt Gödel's unprovable computational statements in 1931, is now called deep learning or machine learning. AI is defined as a computer machine with the ability to make predictions about the future and solve complex tasks, using algorithms. The AI algorithms are enhanced and become effective with big data capturing the present and the past while still necessarily reflecting human biases into models and equations. AI is also capable of making choices like humans, mirroring human reasoning. AI can help robots to efficiently repeat the same labor intensive procedures in factories and can analyze historic and present data efficiently through deep learning, natural language processing, and anomaly detection. Thus, AI covers a spectrum of augmented intelligence relating to prediction, autonomous intelligence relating to decision making, automated intelligence for labor robots, and assisted intelligence for data analysis.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1052
Author(s):  
Leang Sim Nguon ◽  
Kangwon Seo ◽  
Jung-Hyun Lim ◽  
Tae-Jun Song ◽  
Sung-Hyun Cho ◽  
...  

Mucinous cystic neoplasms (MCN) and serous cystic neoplasms (SCN) account for a large portion of solitary pancreatic cystic neoplasms (PCN). In this study we implemented a convolutional neural network (CNN) model using ResNet50 to differentiate between MCN and SCN. The training data were collected retrospectively from 59 MCN and 49 SCN patients from two different hospitals. Data augmentation was used to enhance the size and quality of training datasets. Fine-tuning training approaches were utilized by adopting the pre-trained model from transfer learning while training selected layers. Testing of the network was conducted by varying the endoscopic ultrasonography (EUS) image sizes and positions to evaluate the network performance for differentiation. The proposed network model achieved up to 82.75% accuracy and a 0.88 (95% CI: 0.817–0.930) area under curve (AUC) score. The performance of the implemented deep learning networks in decision-making using only EUS images is comparable to that of traditional manual decision-making using EUS images along with supporting clinical information. Gradient-weighted class activation mapping (Grad-CAM) confirmed that the network model learned the features from the cyst region accurately. This study proves the feasibility of diagnosing MCN and SCN using a deep learning network model. Further improvement using more datasets is needed.


2021 ◽  
Vol 20 ◽  
pp. 153303382110163
Author(s):  
Danju Huang ◽  
Han Bai ◽  
Li Wang ◽  
Yu Hou ◽  
Lan Li ◽  
...  

With the massive use of computers, the growth and explosion of data has greatly promoted the development of artificial intelligence (AI). The rise of deep learning (DL) algorithms, such as convolutional neural networks (CNN), has provided radiation oncologists with many promising tools that can simplify the complex radiotherapy process in the clinical work of radiation oncology, improve the accuracy and objectivity of diagnosis, and reduce the workload, thus enabling clinicians to spend more time on advanced decision-making tasks. As the development of DL gets closer to clinical practice, radiation oncologists will need to be more familiar with its principles to properly evaluate and use this powerful tool. In this paper, we explain the development and basic concepts of AI and discuss its application in radiation oncology based on different task categories of DL algorithms. This work clarifies the possibility of further development of DL in radiation oncology.


Author(s):  
S. Priya ◽  
R. Annie Uthra

AbstractIn present times, data science become popular to support and improve decision-making process. Due to the accessibility of a wide application perspective of data streaming, class imbalance and concept drifting become crucial learning problems. The advent of deep learning (DL) models finds useful for the classification of concept drift in data streaming applications. This paper presents an effective class imbalance with concept drift detection (CIDD) using Adadelta optimizer-based deep neural networks (ADODNN), named CIDD-ADODNN model for the classification of highly imbalanced streaming data. The presented model involves four processes namely preprocessing, class imbalance handling, concept drift detection, and classification. The proposed model uses adaptive synthetic (ADASYN) technique for handling class imbalance data, which utilizes a weighted distribution for diverse minority class examples based on the level of difficulty in learning. Next, a drift detection technique called adaptive sliding window (ADWIN) is employed to detect the existence of the concept drift. Besides, ADODNN model is utilized for the classification processes. For increasing the classifier performance of the DNN model, ADO-based hyperparameter tuning process takes place to determine the optimal parameters of the DNN model. The performance of the presented model is evaluated using three streaming datasets namely intrusion detection (NSL KDDCup) dataset, Spam dataset, and Chess dataset. A detailed comparative results analysis takes place and the simulation results verified the superior performance of the presented model by obtaining a maximum accuracy of 0.9592, 0.9320, and 0.7646 on the applied KDDCup, Spam, and Chess dataset, respectively.


2020 ◽  
pp. 51-62
Author(s):  
S. Vimal ◽  
V. Jeyabalaraja ◽  
P. Subbulakshmi ◽  
A. Suresh ◽  
M. Kaliappan ◽  
...  

Author(s):  
Weichao Wang ◽  
Lei Jiang ◽  
Shiran Lin ◽  
Hui Fang ◽  
Qinggang Meng

Sign in / Sign up

Export Citation Format

Share Document