scholarly journals Knowledge Elicitation Using Deep Metric Learning and Psychometric Testing

Author(s):  
Lu Yin ◽  
Vlado Menkovski ◽  
Mykola Pechenizkiy
Author(s):  
Lu YIn

Knowledge present in a domain is well expressed as relationships between corresponding concepts. For example, in zoology, animal species form complex hierarchies; in genomics, the different (parts of) molecules are organized in groups and subgroups based on their functions; plants, molecules, and astronomical objects all form complex taxonomies. Nevertheless, when applying supervised machine learning (ML) in such domains, we commonly reduce the complex and rich knowledge to a fixed set of labels. This oversimplifies and limits the potential impact that the ML solution can deliver. The main reason for such a reductionist approach is the difficulty in eliciting the domain knowledge from the experts. Developing a label structure with sufficient fidelity and providing comprehensive multi-label annotation can be exceedingly labor-intensive in many real-world applications. Here, we provide a method for efficient hierarchical knowledge elicitation (HKE) from experts working with high-dimensional data such as images or videos. Our method is based on psychometric testing and active deep metric learning. The developed models embed the high-dimensional data in a metric space where distances are semantically meaningful, and the data can be organized in a hierarchical structure.


2020 ◽  
Author(s):  
Yuki Takashima ◽  
Ryoichi Takashima ◽  
Tetsuya Takiguchi ◽  
Yasuo Ariki

Author(s):  
Xinshao Wang ◽  
Yang Hua ◽  
Elyor Kodirov ◽  
Neil M Robertson

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 572
Author(s):  
Alan M. Luu ◽  
Jacob R. Leistico ◽  
Tim Miller ◽  
Somang Kim ◽  
Jun S. Song

Understanding the recognition of specific epitopes by cytotoxic T cells is a central problem in immunology. Although predicting binding between peptides and the class I Major Histocompatibility Complex (MHC) has had success, predicting interactions between T cell receptors (TCRs) and MHC class I-peptide complexes (pMHC) remains elusive. This paper utilizes a convolutional neural network model employing deep metric learning and multimodal learning to perform two critical tasks in TCR-epitope binding prediction: identifying the TCRs that bind a given epitope from a TCR repertoire, and identifying the binding epitope of a given TCR from a list of candidate epitopes. Our model can perform both tasks simultaneously and reveals that inconsistent preprocessing of TCR sequences can confound binding prediction. Applying a neural network interpretation method identifies key amino acid sequence patterns and positions within the TCR, important for binding specificity. Contrary to common assumption, known crystal structures of TCR-pMHC complexes show that the predicted salient amino acid positions are not necessarily the closest to the epitopes, implying that physical proximity may not be a good proxy for importance in determining TCR-epitope specificity. Our work thus provides an insight into the learned predictive features of TCR-epitope binding specificity and advances the associated classification tasks.


2021 ◽  
pp. 1-13
Author(s):  
Kai Zhuang ◽  
Sen Wu ◽  
Xiaonan Gao

To deal with the systematic risk of financial institutions and the rapid increasing of loan applications, it is becoming extremely important to automatically predict the default probability of a loan. However, this task is non-trivial due to the insufficient default samples, hard decision boundaries and numerous heterogeneous features. To the best of our knowledge, existing related researches fail in handling these three difficulties simultaneously. In this paper, we propose a weakly supervised loan default prediction model WEAKLOAN that systematically solves all these challenges based on deep metric learning. WEAKLOAN is composed of three key modules which are used for encoding loan features, learning evaluation metrics and calculating default risk scores. By doing so, WEAKLOAN can not only extract the features of a loan itself, but also model the hidden relationships in loan pairs. Extensive experiments on real-life datasets show that WEAKLOAN significantly outperforms all compared baselines even though the default loans for training are limited.


2021 ◽  
Vol 185 ◽  
pp. 106133
Author(s):  
William Andrew ◽  
Jing Gao ◽  
Siobhan Mullan ◽  
Neill Campbell ◽  
Andrew W. Dowsey ◽  
...  

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 53266-53275
Author(s):  
Anabik Pal ◽  
Zhiyun Xue ◽  
Brian Befano ◽  
Ana Cecilia Rodriguez ◽  
L. Rodney Long ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document