On Time Fractional Derivatives in Fractional Sobolev Spaces and Applications to Fractional Ordinary Differential Equations

Author(s):  
Masahiro Yamamoto
Fractals ◽  
2020 ◽  
Vol 28 (04) ◽  
pp. 2050070 ◽  
Author(s):  
CONG WU

In this paper, we work on a general comparison principle for Caputo fractional-order ordinary differential equations. A full result on maximal solutions to Caputo fractional-order systems is given by using continuation of solutions and a newly proven formula of Caputo fractional derivatives. Based on this result and the formula, we prove a general fractional comparison principle under very weak conditions, in which only the Caputo fractional derivative is involved. This work makes up deficiencies of existing results.


2021 ◽  
Vol 24 (5) ◽  
pp. 1571-1600
Author(s):  
Yulong Li

Abstract This paper investigates the structure of solutions to the BVP of a class of fractional ordinary differential equations involving both fractional derivatives (R-L or Caputo) and fractional Laplacian with variable coefficients. This family of equations generalize the usual fractional diffusion equation and fractional Laplace equation. We provide a deep insight to the structure of the solutions shared by this family of equations. The specific decomposition of the solution is obtained, which consists of the “good” part and the “bad” part that precisely control the regularity and singularity, respectively. Other associated properties of the solution will be characterized as well.


2015 ◽  
Vol 8 (4) ◽  
Author(s):  
Tien-Tsan Shieh ◽  
Daniel E. Spector

AbstractIn this paper, we study a new class of fractional partial differential equations which are obtained by minimizing variational problems in fractional Sobolev spaces. We introduce a notion of fractional gradient which has the potential to extend many classical results in the Sobolev spaces to the nonlocal and fractional setting in a natural way.


Author(s):  
Carl F. Lorenzo ◽  
Tom T. Hartley

It has been known that the initialization of fractional operators requires time-varying functions, a complicating factor. This paper simplifies the process of initialization of fractional differential equations by deriving Laplace transforms for the initialized fractional integral and derivative that generalize those for the integer-order operators. The new transforms unify the initialization of systems of fractional and ordinary differential equations. The paper provides background on past work in the area and determines the Laplace transforms for the initialized fractional integral and fractional derivatives of any (real) order. An application provides insight and demonstrates the theory.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ahmet Bekir ◽  
Özkan Güner ◽  
Adem C. Cevikel

The exp-function method is presented for finding the exact solutions of nonlinear fractional equations. New solutions are constructed in fractional complex transform to convert fractional differential equations into ordinary differential equations. The fractional derivatives are described in Jumarie's modified Riemann-Liouville sense. We apply the exp-function method to both the nonlinear time and space fractional differential equations. As a result, some new exact solutions for them are successfully established.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Dariusz Idczak ◽  
Stanisław Walczak

Using Riemann-Liouville derivatives, we introduce fractional Sobolev spaces, characterize them, define weak fractional derivatives, and show that they coincide with the Riemann-Liouville ones. Next, we prove equivalence of some norms in the introduced spaces and derive their completeness, reflexivity, separability, and compactness of some imbeddings. An application to boundary value problems is given as well.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hasan Bulut ◽  
Haci Mehmet Baskonus ◽  
Fethi Bin Muhammad Belgacem

We introduce the rudiments of fractional calculus and the consequent applications of the Sumudu transform on fractional derivatives. Once this connection is firmly established in the general setting, we turn to the application of the Sumudu transform method (STM) to some interesting nonhomogeneous fractional ordinary differential equations (FODEs). Finally, we use the solutions to form two-dimensional (2D) graphs, by using the symbolic algebra package Mathematica Program 7.


Sign in / Sign up

Export Citation Format

Share Document