Quaternions-Based Normal Gait Kinematics Model

2021 ◽  
pp. 283-291
Author(s):  
Juan C. Gonzalez-Islas ◽  
Omar A. Dominguez-Ramirez ◽  
Omar Lopez-Ortega ◽  
Ma. de los Angeles Alonso-Lavernia ◽  
Felix A. Castro-Espinoza
2017 ◽  
Vol 137 (3) ◽  
pp. 409-416 ◽  
Author(s):  
Dafina Bytyqi ◽  
Bujar Shabani ◽  
Laurence Cheze ◽  
Philippe Neyret ◽  
Sebastien Lustig

2020 ◽  
Vol 48 (4) ◽  
pp. 287-314
Author(s):  
Yan Wang ◽  
Zhe Liu ◽  
Michael Kaliske ◽  
Yintao Wei

ABSTRACT The idea of intelligent tires is to develop a tire into an active perception component or a force sensor with an embedded microsensor, such as an accelerometer. A tire rolling kinematics model is necessary to link the acceleration measured with the tire body elastic deformation, based on which the tire forces can be identified. Although intelligent tires have attracted wide interest in recent years, a theoretical model for the rolling kinematics of acceleration fields is still lacking. Therefore, this paper focuses on an explicit formulation for the tire rolling kinematics of acceleration, thereby providing a foundation for the force identification algorithms for an accelerometer-based intelligent tire. The Lagrange–Euler method is used to describe the acceleration field and contact deformation of rolling contact structures. Then, the three-axis acceleration vectors can be expressed by coupling rigid body motion and elastic deformation. To obtain an analytical expression of the full tire deformation, a three-dimensional tire ring model is solved with the tire–road deformation as boundary conditions. After parameterizing the ring model for a radial tire, the developed method is applied and validated by comparing the calculated three-axis accelerations with those measured by the accelerometer. Based on the features of acceleration, especially the distinct peak values corresponding to the tire leading and trailing edges, an intelligent tire identification algorithm is established to predict the tire–road contact length and tire vertical load. A simulation and experiments are conducted to verify the accuracy of the estimation algorithm, the results of which demonstrate good agreement. The proposed model provides a solid theoretical foundation for an acceleration-based intelligent tire.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takeshi Yamaguchi ◽  
Kei Shibata ◽  
Hiromi Wada ◽  
Hiroshi Kakehi ◽  
Kazuo Hokkirigawa

AbstractHerein, we investigated the effect of friction between foot sole and floor on the external forward moment about the body center of mass (COM) in normal and shuffling gaits. Five young male adults walked with normal and shuffling gaits, under low- and high-friction surface conditions. The maximum external forward moment about the COM (MEFM-COM) in a normal gait appeared approximately at initial foot contact and was unaffected by floor condition. However, MEFM-COM in a shuffling gait under high-friction conditions exceeded that under low-friction conditions (p < 0.001). Therein, MEFM-COM increased with an increasing utilized coefficient of friction at initial foot contact; this effect was weaker during a normal gait. These findings indicate that increased friction between foot sole and floor might increase tripping risk during a shuffling gait, even in the absence of discrete physical obstacles.


2021 ◽  
Vol 11 (13) ◽  
pp. 6224
Author(s):  
Qisong Zhou ◽  
Jianzhong Tang ◽  
Yong Nie ◽  
Zheng Chen ◽  
Long Qin

The cable-driven hyper-redundant snake-like manipulator (CHSM) inspired by the biomimetic structure of vertebrate muscles and tendons, which consists of numerous joint units connected adjacently driven by elastic materials with hyper-redundant DOF, performs flexible kinematic skills and competitive compound capability under complicated working circumstances. Nevertheless, the drawback of lacking the ability to perceive the environment to perform intelligently in complex scenarios leaves a lot to be improved, which is the original intention to introduce visual tracking feedback acting as an instructor. In this paper, a cable-driven snake-like robotic arm combined with a visual tracking technique is introduced. A visual tracking approach based on dual correlation filter is designed to guide the CHSM in detecting the target and tracing after its trajectory. Specifically, it contains an adaptive optimization for the scale variation of the tracking target via pyramid sampling. For the CHSM, an explicit kinematics model is derived from its specific geometry relationships and followed by a simplification for the inverse kinematics based on some assumption or limitation. A control scheme is brought up to combine the kinematics with visual tracking via the processing tracking errors. The experimental results with a practical prototype validate the availability of the proposed compound control method with the derived kinematics model.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2619
Author(s):  
Yoshiaki Kataoka ◽  
Ryo Takeda ◽  
Shigeru Tadano ◽  
Tomoya Ishida ◽  
Yuki Saito ◽  
...  

Recently, treadmills equipped with a lower-body positive-pressure (LBPP) device have been developed to provide precise body weight support (BWS) during walking. Since lower limbs are covered in a waist-high chamber of an LBPP treadmill, a conventional motion analysis using an optical method is impossible to evaluate gait kinematics on LBPP. We have developed a wearable-sensor-based three-dimensional motion analysis system, H-Gait. The purpose of the present study was to investigate the effects of BWS by a LBPP treadmill on gait kinematics using an H-Gait system. Twenty-five healthy subjects walked at 2.5 km/h on a LBPP treadmill under the following three conditions: (1) 0%BWS, (2) 25%BWS and (3) 50%BWS conditions. Acceleration and angular velocity from seven wearable sensors were used to analyze lower limb kinematics during walking. BWS significantly decreased peak angles of hip adduction, knee adduction and ankle dorsiflexion. In particular, the peak knee adduction angle at the 50%BWS significantly decreased compared to at the 25%BWS (p = 0.012) or 0%BWS (p < 0.001). The present study showed that H-Gait system can detect the changes in gait kinematics in response to BWS by a LBPP treadmill and provided a useful clinical application of the H-Gait system to walking exercises.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0169924 ◽  
Author(s):  
Jeff A. Nessler ◽  
Severne Heredia ◽  
Jacques Bélair ◽  
John Milton

Sign in / Sign up

Export Citation Format

Share Document