Non-cooperative Energy Consumption Scheduling for Smart Grid: An Evolutionary Game Approach

Author(s):  
Zhaowei Zhang ◽  
Hui Liu
2018 ◽  
Vol 9 (5) ◽  
pp. 4262-4269 ◽  
Author(s):  
Samaresh Bera ◽  
Sudip Misra ◽  
Durba Chatterjee

2020 ◽  
Author(s):  
Sujie Shao ◽  
Lei Wu ◽  
Qinghang Zhang ◽  
Neng Zhang ◽  
Kaixuan Wang

Abstract To take full advantage of the flexibility of access and disconnection from smart grid, organizing distributed renewable energy resources in form of microgrid becomes one solution of energy replenishment in smart grid. A large amount of accurate and comprehensive information data are needed to be monitored by a variety of different types of sensors to guarantee the effective operation of this kind of microgrid. Energy consumption of microgrid monitoring WSN consequently becomes an issue. This paper presents a novel lifetime prolongation algorithm based on cooperative coverage of different types of sensors. Firstly, according to the requirements of monitoring business, the construction of cooperative coverage sets and connected monitoring WSN are discussed. Secondly, energy consumption is analyzed based on cooperative coverage. Finally, the cooperative coverage based lifetime prolongation algorithm (CC-LP) is proposed. Both the energy consumption balancing inside the cooperative coverage set and the switching scheduling between cooperative coverage sets are discussed. Then we draw into an improved ant colony optimization algorithm to calculate the switching scheduling. Simulation results show that this novel algorithm can effectively prolong the lifetime of monitoring WSN, especially in the monitoring area with a large deployed density of different types of sensors.


2022 ◽  
pp. 180-190
Author(s):  
Brahim Lejdel

The need for energy in the agriculture field is increasing as a result of increasing the productivity of these fields. The appearance of smart grid and IoT (internet of objects) enabled farmers to control, manage, and optimize the energy consumption. Agriculture will continue to rely on energy to increase its productivity in line with increasing population and great demand. In this chapter, the authors present an integrated model between SmartFarms, the smart-grid, and optimization methods. In this way, smart forms can participate actively and benefit from the energy market. In this chapter, they consider the electrical energy that is directly used in activities ranging from field processes such as irrigation of land. Energy is also indirectly consumed in synthetic additives notably fertilizers, pesticides, and herbicides. In addition, the authors can consider the electrical energy, which is used for powering some agricultural machines.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1187 ◽  
Author(s):  
Fernando Yanine ◽  
Antonio Sánchez-Squella ◽  
Aldo Barrueto ◽  
Antonio Parejo ◽  
Felisa Cordova ◽  
...  

In this paper a novel model is being proposed and considered by ENEL—the largest electric utility in Chile—and analyzed thoroughly, whereby electric power control and energy management for a 60-apartments’ residential building is presented as an example of the utility’s green energy program, part of its Smart Grid Transformation plan to install grid-tied distributed generation (DG) systems, namely microgrids, with solar generation and energy storage in Santiago, Chile. The particular tariffs scheme analysis shown is part of the overall projected tentative benefits of adopting the new scheme, which will require the utility’s customers to adapt their consumption behavior to the limited supply of renewable energy by changing energy consumption habits and schedules in a way that maximizes the capacity and efficiency of the grid-tied microgrid with energy storage. The change in behavior entails rescheduling power consumption to hours where the energy supply capacity in the DG system is higher and price is lower as well as curtailing their power needs in certain hourly blocks so as to maximize DG system’s efficiency and supply capacity. Nevertheless, the latter presents a problem under the perspective of ENEL’s renewable energy sources (RES) integration plan with the electric utility’s grid supply, which, up until now and due to current electric tariffs law, has not had a clear solution. Under said scenario, a set of strategies based on energy homeostasis principles for the coordination and control of the electricity supply versus customers’ demand has been devised and tested. These strategies which consider various scenarios to conform to grid flexibility requirements by ENEL, have been adapted for the specific needs of these types of customers while considering the particular infrastructure of the network. Thus, the microgrid adjusts itself to the grid in order to complement the grid supply while seeking to maximize green supply capacity and operational efficiency, wherein the different energy users and their energy consumption profiles play a crucial role as “active loads”, being able to respond and adapt to the needs of the grid-connected microgrid while enjoying economic benefits. Simulation results are presented under different tariff options, system’s capacity and energy storage alternatives, in order to compare the proposed strategies with the actual case of traditional grid’s electricity distribution service, where no green energy is present. The results show the advantage of the proposed tariffs scheme, along with power control and energy management strategies for the integration of distributed power generation within ENEL’s Smart Grid Transformation in Chile.


Sign in / Sign up

Export Citation Format

Share Document