Improved Thyroid Disease Prediction Model Using Data Mining Techniques with Outlier Detection

Author(s):  
Yasir Iqbal Mir
Author(s):  
Abhishek Rairikar ◽  
Vedant Kulkarni ◽  
Vikas Sabale ◽  
Harshavardhan Kale ◽  
Anuradha Lamgunde

Author(s):  
Kalyani Kadam ◽  
Pooja Vinayak Kamat ◽  
Amita P. Malav

Cardiovascular diseases (CVDs) have turned out to be one of the life-threatening diseases in recent times. The key to effectively managing this is to analyze a huge amount of datasets and effectively mine it to predict and further prevent heart-related diseases. The primary objective of this chapter is to understand and survey various information mining strategies to efficiently determine occurrence of CVDs and also propose a big data architecture for the same. The authors make use of Apache Spark for the implementation.


2020 ◽  
Vol 12 (23) ◽  
pp. 9790
Author(s):  
Sanghoon Lee ◽  
Keunho Choi ◽  
Donghee Yoo

The government makes great efforts to maintain the soundness of policy funds raised by the national budget and lent to corporate. In general, previous research on the prediction of company insolvency has dealt with large and listed companies using financial information with conventional statistical techniques. However, small- and medium-sized enterprises (SMEs) do not have to undergo mandatory external audits, and the quality of accounting information is low due to weak internal control. To overcome this problem, we developed an insolvency prediction model for SMEs using data mining techniques and technological feasibility assessment information as non-financial information. We divided the dataset into two types of data based on three years of corporate age. The synthetic minority over-sampling technique (SMOTE) was used to solve the data imbalance that occurred at this time. Six insolvency prediction models were created using logistic regression, a decision tree, an artificial neural network, and an ensemble (i.e., boosting) of each algorithm. By applying a boosted decision tree, the best accuracies of 69.1% and 82.7% were derived, and by applying a decision tree, nine and seven influential factors affected the insolvency of SMEs established for fewer than three years and more than three years, respectively. In addition, we derived several insolvency rules for the two types of SMEs from the decision tree-based prediction model and proposed ways to enhance the health of loans given to potentially insolvent companies using these derived rules. The results of this study show that it is possible to predict SMEs’ insolvency using data mining techniques with technological feasibility assessment information and find meaningful rules related to insolvency.


Sign in / Sign up

Export Citation Format

Share Document