Refinement of the Structure of the Eastern Govsan Area Using a New Method of Seismic Inversion and a Lithological Model of the Zykh Field of Azerbaijan Based on 3D and GRW Seismic Data

Author(s):  
T. R. Ahmedov ◽  
K. A. Kurochkina
Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C177-C191 ◽  
Author(s):  
Yunyue Li ◽  
Biondo Biondi ◽  
Robert Clapp ◽  
Dave Nichols

Seismic anisotropy plays an important role in structural imaging and lithologic interpretation. However, anisotropic model building is a challenging underdetermined inverse problem. It is well-understood that single component pressure wave seismic data recorded on the upper surface are insufficient to resolve a unique solution for velocity and anisotropy parameters. To overcome the limitations of seismic data, we have developed an integrated model building scheme based on Bayesian inference to consider seismic data, geologic information, and rock-physics knowledge simultaneously. We have performed the prestack seismic inversion using wave-equation migration velocity analysis (WEMVA) for vertical transverse isotropic (VTI) models. This image-space method enabled automatic geologic interpretation. We have integrated the geologic information as spatial model correlations, applied on each parameter individually. We integrate the rock-physics information as lithologic model correlations, bringing additional information, so that the parameters weakly constrained by seismic are updated as well as the strongly constrained parameters. The constraints provided by the additional information help the inversion converge faster, mitigate the ambiguities among the parameters, and yield VTI models that were consistent with the underlying geologic and lithologic assumptions. We have developed the theoretical framework for the proposed integrated WEMVA for VTI models and determined the added information contained in the regularization terms, especially the rock-physics constraints.


Author(s):  
Michael Gineste ◽  
Jo Eidsvik

AbstractAn ensemble-based method for seismic inversion to estimate elastic attributes is considered, namely the iterative ensemble Kalman smoother. The main focus of this work is the challenge associated with ensemble-based inversion of seismic waveform data. The amount of seismic data is large and, depending on ensemble size, it cannot be processed in a single batch. Instead a solution strategy of partitioning the data recordings in time windows and processing these sequentially is suggested. This work demonstrates how this partitioning can be done adaptively, with a focus on reliable and efficient estimation. The adaptivity relies on an analysis of the update direction used in the iterative procedure, and an interpretation of contributions from prior and likelihood to this update. The idea is that these must balance; if the prior dominates, the estimation process is inefficient while the estimation is likely to overfit and diverge if data dominates. Two approaches to meet this balance are formulated and evaluated. One is based on an interpretation of eigenvalue distributions and how this enters and affects weighting of prior and likelihood contributions. The other is based on balancing the norm magnitude of prior and likelihood vector components in the update. Only the latter is found to sufficiently regularize the data window. Although no guarantees for avoiding ensemble divergence are provided in the paper, the results of the adaptive procedure indicate that robust estimation performance can be achieved for ensemble-based inversion of seismic waveform data.


Geophysics ◽  
2021 ◽  
pp. 1-51
Author(s):  
Chao Wang ◽  
Yun Wang

Reduced-rank filtering is a common method for attenuating noise in seismic data. As conventional reduced-rank filtering distinguishes signals from noises only according to singular values, it performs poorly when the signal-to-noise ratio is very low, or when data contain high levels of isolate or coherent noise. Therefore, we developed a novel and robust reduced-rank filtering based on the singular value decomposition in the time-space domain. In this method, noise is recognized and attenuated according to the characteristics of both singular values and singular vectors. The left and right singular vectors corresponding to large singular values are selected firstly. Then, the right singular vectors are classified into different categories according to their curve characteristics, such as jump, pulse, and smooth. Each kind of right singular vector is related to a type of noise or seismic event, and is corrected by using a different filtering technology, such as mean filtering, edge-preserving smoothing or edge-preserving median filtering. The left singular vectors are also corrected by using the filtering methods based on frequency attributes like main-frequency and frequency bandwidth. To process seismic data containing a variety of events, local data are extracted along the local dip of event. The optimal local dip is identified according to the singular values and singular vectors of the data matrices that are extracted along different trial directions. This new filtering method has been applied to synthetic and field seismic data, and its performance is compared with that of several conventional filtering methods. The results indicate that the new method is more robust for data with a low signal-to-noise ratio, strong isolate noise, or coherent noise. The new method also overcomes the difficulties associated with selecting an optimal rank.


2021 ◽  
Vol 40 (10) ◽  
pp. 751-758
Author(s):  
Fabien Allo ◽  
Jean-Philippe Coulon ◽  
Jean-Luc Formento ◽  
Romain Reboul ◽  
Laure Capar ◽  
...  

Deep neural networks (DNNs) have the potential to streamline the integration of seismic data for reservoir characterization by providing estimates of rock properties that are directly interpretable by geologists and reservoir engineers instead of elastic attributes like most standard seismic inversion methods. However, they have yet to be applied widely in the energy industry because training DNNs requires a large amount of labeled data that is rarely available. Training set augmentation, routinely used in other scientific fields such as image recognition, can address this issue and open the door to DNNs for geophysical applications. Although this approach has been explored in the past, creating realistic synthetic well and seismic data representative of the variable geology of a reservoir remains challenging. Recently introduced theory-guided techniques can help achieve this goal. A key step in these hybrid techniques is the use of theoretical rock-physics models to derive elastic pseudologs from variations of existing petrophysical logs. Rock-physics theories are already commonly relied on to generalize and extrapolate the relationship between rock and elastic properties. Therefore, they are a useful tool to generate a large catalog of alternative pseudologs representing realistic geologic variations away from the existing well locations. While not directly driven by rock physics, neural networks trained on such synthetic catalogs extract the intrinsic rock-physics relationships and are therefore capable of directly estimating rock properties from seismic amplitudes. Neural networks trained on purely synthetic data are applied to a set of 2D poststack seismic lines to characterize a geothermal reservoir located in the Dogger Formation northeast of Paris, France. The goal of the study is to determine the extent of porous and permeable layers encountered at existing geothermal wells and ultimately guide the location and design of future geothermal wells in the area.


2021 ◽  
Vol 19 (3) ◽  
pp. 125-138
Author(s):  
S. Inichinbia ◽  
A.L. Ahmed

This paper presents a rigorous but pragmatic and data driven approach to the science of making seismic-to-well ties. This pragmatic  approach is consistent with the interpreter’s desire to correlate geology to seismic information by the use of the convolution model,  together with least squares matching techniques and statistical measures of fit and accuracy to match the seismic data to the well data. Three wells available on the field provided a chance to estimate the wavelet (both in terms of shape and timing) directly from the seismic and also to ascertain the level of confidence that should be placed in the wavelet. The reflections were interpreted clearly as hard sand at H1000 and soft sand at H4000. A synthetic seismogram was constructed and matched to a real seismic trace and features from the well are correlated to the seismic data. The prime concept in constructing the synthetic is the convolution model, which represents a seismic reflection signal as a sequence of interfering reflection pulses of different amplitudes and polarity but all of the same shape. This pulse shape is the seismic wavelet which is formally, the reflection waveform returned by an isolated reflector of unit strength at the target  depth. The wavelets are near zero phase. The goal and the idea behind these seismic-to-well ties was to obtain information on the sediments, calibration of seismic processing parameters, correlation of formation tops and seismic reflectors, and the derivation of a  wavelet for seismic inversion among others. Three seismic-to-well ties were done using three partial angle stacks and basically two formation tops were correlated. Keywords: seismic, well logs, tie, synthetics, angle stacks, correlation,


Sign in / Sign up

Export Citation Format

Share Document