scholarly journals Batch seismic inversion using the iterative ensemble Kalman smoother

Author(s):  
Michael Gineste ◽  
Jo Eidsvik

AbstractAn ensemble-based method for seismic inversion to estimate elastic attributes is considered, namely the iterative ensemble Kalman smoother. The main focus of this work is the challenge associated with ensemble-based inversion of seismic waveform data. The amount of seismic data is large and, depending on ensemble size, it cannot be processed in a single batch. Instead a solution strategy of partitioning the data recordings in time windows and processing these sequentially is suggested. This work demonstrates how this partitioning can be done adaptively, with a focus on reliable and efficient estimation. The adaptivity relies on an analysis of the update direction used in the iterative procedure, and an interpretation of contributions from prior and likelihood to this update. The idea is that these must balance; if the prior dominates, the estimation process is inefficient while the estimation is likely to overfit and diverge if data dominates. Two approaches to meet this balance are formulated and evaluated. One is based on an interpretation of eigenvalue distributions and how this enters and affects weighting of prior and likelihood contributions. The other is based on balancing the norm magnitude of prior and likelihood vector components in the update. Only the latter is found to sufficiently regularize the data window. Although no guarantees for avoiding ensemble divergence are provided in the paper, the results of the adaptive procedure indicate that robust estimation performance can be achieved for ensemble-based inversion of seismic waveform data.

2021 ◽  
pp. 1-97
Author(s):  
Lingxiao Jia ◽  
Subhashis Mallick ◽  
Cheng Wang

The choice of an initial model for seismic waveform inversion is important. In matured exploration areas with adequate well control, we can generate a suitable initial model using well information. However, in new areas where well control is sparse or unavailable, such an initial model is compromised and/or biased by the regions with more well controls. Even in matured exploration areas, if we use time-lapse seismic data to predict dynamic reservoir properties, an initial model, that we obtain from the existing preproduction wells could be incorrect. In this work, we outline a new methodology and workflow for a nonlinear prestack isotropic elastic waveform inversion. We call this method a data driven inversion, meaning that we derive the initial model entirely from the seismic data without using any well information. By assuming a locally horizonal stratification for every common midpoint and starting from the interval P-wave velocity, estimated entirely from seismic data, our method generates pseudo wells by running a two-pass one-dimensional isotropic elastic prestack waveform inversion that uses the reflectivity method for forward modeling and genetic algorithm for optimization. We then use the estimated pseudo wells to build the initial model for seismic inversion. By applying this methodology to real seismic data from two different geological settings, we demonstrate the usefulness of our method. We believe that our new method is potentially applicable for subsurface characterization in areas where well information is sparse or unavailable. Additional research is however necessary to improve the compute-efficiency of the methodology.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. B1-B12 ◽  
Author(s):  
Josiane Pafeng ◽  
Subhashis Mallick ◽  
Hema Sharma

Applying seismic inversion to estimate subsurface elastic earth properties for reservoir characterization is a challenge in exploration seismology. In recent years, waveform-based seismic inversions have gained popularity, but due to high computational costs, their applications are limited, and amplitude-variation-with-offset/angle inversion is still the current state-of-the-art. We have developed a genetic-algorithm-based prestack seismic waveform inversion methodology. By parallelizing at multiple levels and assuming a locally 1D structure such that forward computation of wave equation synthetics is computationally efficient, this method is capable of inverting 3D prestack seismic data on parallel computers. Applying this inversion to a real prestack seismic data volume from the Rock Springs Uplift (RSU) located in Wyoming, USA, we determined that our method is capable of inverting the data in a reasonable runtime and producing much higher quality results than amplitude-variation-with-offset/angle inversion. Because the primary purpose for seismic data acquisition at the RSU was to characterize the subsurface for potential targets for carbon dioxide sequestration, we also identified and analyzed some potential primary and secondary storage formations and their associated sealing lithologies from our inversion results.


Author(s):  
Christos P. Evangelidis ◽  
Nikolaos Triantafyllis ◽  
Michalis Samios ◽  
Kostas Boukouras ◽  
Kyriakos Kontakos ◽  
...  

Abstract The National Observatory of Athens data center for the European Integrated Data Archive (EIDA@NOA) is the national and regional node that supports International Federation of Digital Seismograph Networks and related webservices for seismic waveform data coming from the southeastern Mediterranean and the Balkans. At present, it serves data from eight permanent broadband and strong-motion networks from Greece and Cyprus, individual stations from the Balkans, temporary networks and aftershock deployments, and earthquake engineering experimental facilities. EIDA@NOA provides open and unlimited access from redundant node end points, intended mainly for research purposes (see Data and Resources). Analysis and quality control of the complete seismic data archive is performed initially by calculating waveform metrics and data availability. Seismic ambient noise metrics are estimated based on power spectral densities, and an assessment of each station’s statistical mode is achieved within each network and across networks. Moreover, the minimum ambient noise level expected for strong-motion installations is defined. Sensor orientation is estimated using surface-wave polarization methods to detect stations with misalignment on particular epochs. A single data center that hosts the complete seismic data archives with their respective metadata from networks covering similar geographical areas allows coordination between network operators and facilitates the adhesion to widely used best practices regarding station installation, data curation, and metadata definition. The overall achievement is harmonization among all contributing networks and a wider usage of all data archives, ultimately strengthening seismological research efforts in the region.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. U45-U57 ◽  
Author(s):  
Lianlian Hu ◽  
Xiaodong Zheng ◽  
Yanting Duan ◽  
Xinfei Yan ◽  
Ying Hu ◽  
...  

In exploration geophysics, the first arrivals on data acquired under complicated near-surface conditions are often characterized by significant static corrections, weak energy, low signal-to-noise ratio, and dramatic phase change, and they are difficult to pick accurately with traditional automatic procedures. We have approached this problem by using a U-shaped fully convolutional network (U-net) to first-arrival picking, which is formulated as a binary segmentation problem. U-net has the ability to recognize inherent patterns of the first arrivals by combining attributes of arrivals in space and time on data of varying quality. An effective workflow based on U-net is presented for fast and accurate picking. A set of seismic waveform data and their corresponding first-arrival times are used to train the network in a supervised learning approach, then the trained model is used to detect the first arrivals for other seismic data. Our method is applied on one synthetic data set and three field data sets of low quality to identify the first arrivals. Results indicate that U-net only needs a few annotated samples for learning and is able to efficiently detect first-arrival times with high precision on complicated seismic data from a large survey. With the increasing training data of various first arrivals, a trained U-net has the potential to directly identify the first arrivals on new seismic data.


Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. R29-R39 ◽  
Author(s):  
Michael Gineste ◽  
Jo Eidsvik ◽  
York Zheng

Seismic waveform inversion is a nontrivial optimization task, which is often complicated by the nonlinear relationship between the elastic attributes of interest and the large amount of data obtained in seismic experiments. Quantifying the solution uncertainty can be even more challenging, and it requires considering the problem in a probabilistic setting. Consequently, the seismic inverse problem is placed in a Bayesian framework, using a sequential filtering approach to invert for the elastic parameters. The method uses an iterative ensemble smoother to estimate the subsurface parameters, and from the ensemble, a notion of estimation uncertainty is readily available. The ensemble implicitly linearizes the relation between the parameters and the observed waveform data; hence, it requires no tangent linear model. The approach is based on sequential conditioning on partitions of the whole data record (1) to regularize the inversion path and effectively drive the estimation process in a top-down manner and (2) to circumvent a consequence of the ensemble reduced rank approximation. The method is exemplified on a synthetic case, inverting for elastic parameters in a 1D medium using a seismic shot record. Our results indicate that the iterative ensemble method is applicable to seismic waveform inversion and that the ensemble representation indeed indicates estimation uncertainty.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCC79-WCC89 ◽  
Author(s):  
Hansruedi Maurer ◽  
Stewart Greenhalgh ◽  
Sabine Latzel

Analyses of synthetic frequency-domain acoustic waveform data provide new insights into the design and imaging capability of crosshole surveys. The full complex Fourier spectral data offer significantly more information than other data representations such as the amplitude, phase, or Hartley spectrum. Extensive eigenvalue analyses are used for further inspection of the information content offered by the seismic data. The goodness of different experimental configurations is investigated by varying the choice of (1) the frequencies, (2) the source and receiver spacings along the boreholes, and (3) the borehole separation. With only a few carefully chosen frequencies, a similar amount of information can be extracted from the seismic data as can be extracted with a much larger suite of equally spaced frequencies. Optimized data sets should include at least one very low frequencycomponent. The remaining frequencies should be chosen fromthe upper end of the spectrum available. This strategy proved to be applicable to a simple homogeneous and a very complex velocity model. Further tests are required, but it appears on the available evidence to be model independent. Source and receiver spacings also have an effect on the goodness of an experimental setup, but there are only minor benefits to denser sampling when the increment is much smaller than the shortest wavelength included in a data set. If the borehole separation becomes unfavorably large, the information content of the data is degraded, even when many frequencies and small source and receiver spacings are considered. The findings are based on eigenvalue analyses using the true velocity models. Because under realistic conditions the true model is not known, it is shown that the optimized data sets are sufficiently robust to allow the iterative inversion schemes to converge to the global minimum. This is demonstrated by means of tomographic inversions of several optimized data sets.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1750-1753
Author(s):  
Peng Yu

Differing from the current inversion methods, the frequency-divided inversion is depend on well logging and seismic data, using the methods of support vector computer to study the amplitude response in different detective frequencies (amplitude versus frequency, simply called AVF), taking AVF as independent information of inversion and creating the non-linear mapping relationship between wave impedance curves of logging data and seismic waveform, fully using the information of low, medium and high frequencies in seismic data to reduce the inversion uncertainty and get a higher resolution result. Frequency-divided inversion is also a high resolution seismic inversion method which no needs wavelet extraction and prior model.


2020 ◽  
Vol 91 (4) ◽  
pp. 2127-2140 ◽  
Author(s):  
Glenn Thompson ◽  
John A. Power ◽  
Jochen Braunmiller ◽  
Andrew B. Lockhart ◽  
Lloyd Lynch ◽  
...  

Abstract An eruption of the Soufrière Hills Volcano (SHV) on the eastern Caribbean island of Montserrat began on 18 July 1995 and continued until February 2010. Within nine days of the eruption onset, an existing four-station analog seismic network (ASN) was expanded to 10 sites. Telemetered data from this network were recorded, processed, and archived locally using a system developed by scientists from the U.S. Geological Survey (USGS) Volcano Disaster Assistance Program (VDAP). In October 1996, a digital seismic network (DSN) was deployed with the ability to capture larger amplitude signals across a broader frequency range. These two networks operated in parallel until December 2004, with separate telemetry and acquisition systems (analysis systems were merged in March 2001). Although the DSN provided better quality data for research, the ASN featured superior real-time monitoring tools and captured valuable data including the only seismic data from the first 15 months of the eruption. These successes of the ASN have been rather overlooked. This article documents the evolution of the ASN, the VDAP system, the original data captured, and the recovery and conversion of more than 230,000 seismic events from legacy SUDS, Hypo71, and Seislog formats into Seisan database with waveform data in miniSEED format. No digital catalog existed for these events, but students at the University of South Florida have classified two-thirds of the 40,000 events that were captured between July 1995 and October 1996. Locations and magnitudes were recovered for ∼10,000 of these events. Real-time seismic amplitude measurement, seismic spectral amplitude measurement, and tiltmeter data were also captured. The result is that the ASN seismic dataset is now more discoverable, accessible, and reusable, in accordance with FAIR data principles. These efforts could catalyze new research on the 1995–2010 SHV eruption. Furthermore, many observatories have data in these same legacy data formats and might benefit from procedures and codes documented here.


Sign in / Sign up

Export Citation Format

Share Document