scholarly journals The High-Impact Weather Assessment Toolkit

Author(s):  
Patrick N. Gatlin ◽  
Jonathan L. Case ◽  
Jayanthi Srikishen ◽  
Bhupesh Adhikary

AbstractOf the various types of weather phenomena, thunderstorms produce some of the most immediate and impactful hazards—damaging winds and hail, frequent lightning, and intense rainfall. Resilience to high-impact weather can be attained through investment in several key areas: proper infrastructure; effective emergency management; public education; and well-informed weather forecasting services.

2019 ◽  
Vol 12 (2) ◽  
pp. 80-90 ◽  
Author(s):  
Zhenglong LI ◽  
Jun LI ◽  
Timothy J. SCHMIT ◽  
Pei WANG ◽  
Agnes LIM ◽  
...  

2021 ◽  
Author(s):  
Alfons Callado-Pallarès

<p>SRNWP-EPS module/project into EUMETNET NWP Cooperation Programme has as main goals facilitating and coordinating the cooperation on developing reliable mesoscale convection-permitting ensemble systems (LAM-EPS) in Europe, and, at the same time, grouping efforts developing tools which can be smoothly applied to any LAM-EPS. This is motivated by the fact that the development of LAM-EPS capabilities in Europe is crucial for forecasting a range of weather phenomena and in particular for improving HIW (High Impact Weather) prediction. Due   to the latter, the current SRNWP-EPS 2019-2023 phase is focused on extreme events.</p><p>The project results as a survey on products for high-impact weather forecasting and the R2O (Research to Operations) LAM-EPS applications will be presented. The three main R2O forecasting tools developed as project requirements are: calibration of daily and  12 hours extremes for variables such as 10 metres maximum wind gusts, maximum accumulated precipitation, maximum and minimum2m temperatures; the forecasting post-processing LAM-EPS products devoted to HIW forecasting and focused on aeronautics such as icing, thunderstorms’ diagnostic and classification, clear-air turbulence and fog; and tools to apply in an affordable way an Extreme Forecast Index (EFI) and Shift of Tales Index (SOT) on LAM-EPSs.</p><p>Moreover, an off-line database of European convection-permitting LAM-EPS ensembles has been established at ECMWF, which archives convection related parameters close to the surface. The aim of LAM-EPS database is to foster coordinate research and collaborations around LAM-EPSs in order to improve HIW events bringing together all European LAM-NWP consortia (ALADIN, HIRLAM, COSMO, LACE, MetOffice partners, etc.). At the time of writing, nine participants are currently archiving since 1<sup>st</sup> of June of 2020: MOGREPS-UK (MetOffice), MEPS (MetCoOp), <em>γ</em>SREPS (AEMET), IT-EPS (ItAF-REMET), IREPS (Met Éireann), COMEPS (DMI), MF-AromeEps (MétéoFrance), RMI-EPS (RMI) and ICON-D2-EPS (DWD). The SRNWP-EPS convection-permitting LAM-EPS database is currently being used by project research sub-groups, for example to check multi-ensemble performance or comparing two LAM-EPSs in their common overlapping area.</p>


2018 ◽  
Vol 99 (10) ◽  
pp. 2025-2043 ◽  
Author(s):  
Lans P. Rothfusz ◽  
Russell Schneider ◽  
David Novak ◽  
Kimberly Klockow-McClain ◽  
Alan E. Gerard ◽  
...  

AbstractRecommendations by the National Research Council (NRC), the National Institute of Standards and Technology (NIST), and Weather-Ready Nation workshop participants have encouraged the National Oceanic and Atmospheric Administration (NOAA) and the broader weather enterprise to explore and expand the use of probabilistic information to convey weather forecast uncertainty. Forecasting a Continuum of Environmental Threats (FACETs) is a concept being explored by NOAA to address those recommendations and also potentially shift the National Weather Service (NWS) from (primarily) teletype-era, deterministic watch–warning products to high-resolution, probabilistic hazard information (PHI) spanning periods from days (and longer) to within minutes of high-impact weather and water events. FACETs simultaneously i) considers a reinvention of the NWS hazard forecasting and communication paradigm so as to deliver multiscale, user-specific probabilistic guidance from numerical weather prediction ensembles and ii) provides a comprehensive framework to organize the physical, social, and behavioral sciences, the technology, and the practices needed to achieve that reinvention. The first applications of FACETs have focused on thunderstorm phenomena, but the FACETs concept is envisioned to extend to the attributes of any environmental hazards that can be described probabilistically (e.g., winter, tropical, and aviation weather). This paper introduces the FACETs vision, the motivation for its creation, the research and development under way to explore that vision, its relevance to operational forecasting and society, and possible strategies for implementation.


2020 ◽  
Vol 20 (5) ◽  
pp. 1513-1531 ◽  
Author(s):  
Oriol Rodríguez ◽  
Joan Bech ◽  
Juan de Dios Soriano ◽  
Delia Gutiérrez ◽  
Salvador Castán

Abstract. Post-event damage assessments are of paramount importance to document the effects of high-impact weather-related events such as floods or strong wind events. Moreover, evaluating the damage and characterizing its extent and intensity can be essential for further analysis such as completing a diagnostic meteorological case study. This paper presents a methodology to perform field surveys of damage caused by strong winds of convective origin (i.e. tornado, downburst and straight-line winds). It is based on previous studies and also on 136 field studies performed by the authors in Spain between 2004 and 2018. The methodology includes the collection of pictures and records of damage to human-made structures and on vegetation during the in situ visit to the affected area, as well as of available automatic weather station data, witness reports and images of the phenomenon, such as funnel cloud pictures, taken by casual observers. To synthesize the gathered data, three final deliverables are proposed: (i) a standardized text report of the analysed event, (ii) a table consisting of detailed geolocated information about each damage point and other relevant data and (iii) a map or a KML (Keyhole Markup Language) file containing the previous information ready for graphical display and further analysis. This methodology has been applied by the authors in the past, sometimes only a few hours after the event occurrence and, on many occasions, when the type of convective phenomenon was uncertain. In those uncertain cases, the information resulting from this methodology contributed effectively to discern the phenomenon type thanks to the damage pattern analysis, particularly if no witness reports were available. The application of methodologies such as the one presented here is necessary in order to build homogeneous and robust databases of severe weather cases and high-impact weather events.


2006 ◽  
Vol 16 (3) ◽  
pp. 167-180 ◽  
Author(s):  
Kate M. Thomas ◽  
Dominique F. Charron ◽  
David Waltner-Toews ◽  
Corinne Schuster ◽  
Abdel R. Maarouf ◽  
...  

2007 ◽  
Author(s):  
J. Doyle ◽  
C. Reynolds ◽  
J. McLay ◽  
T. Holt ◽  
J. Teixeira ◽  
...  

2017 ◽  
Author(s):  
Qiuxia Wu

Abstract. Their economic and social importance emphasized by the survey of Department of Disaster Relief, Ministry of Civil Affairs of the People’s Republic of China, two different typical patterns of precipitation anomaly in the southern part of China during the 1982/1983 and 2009/2010 cold seasons coincided with the canonical El Niño and positive North Atlantic Oscillation (NAO) and with the El Niño Modoki and negative NAO, respectively. A better understanding of how a particular type of El Niño and a specific phase of NAO worked together to cause the relevant anomalous atmospheric circulation over the East Asia in the two high impact weather and climate cases was an interesting issue and could improve the prediction skill of natural hazards to a certain extent. In conclusion, superimposing on the remote and local Rossby wave responses in the atmosphere induced by the El Niño Modoki-related condensational heat sink over the South China Sea, the downstream extension of the negative NAO was well established by a NAO-induced stationary Rossby wave train along the Asian subtropical jet and played a major role in the persistent dry conditions in the Southwest China for the 2009/2010 boreal winter. On the contrary, for the 1982/1983 boreal winter, the canonical El Niño weakened the downstream extension of the positive NAO, and induced by the canonical El Niño-related condensational heat sink over the western equatorial Pacific Ocean, the remote and local Rossby wave responses in the atmosphere played a leading role in the sustained wet conditions in the South China.


Sign in / Sign up

Export Citation Format

Share Document