Design of External Rotor Permanent Magnet Synchronous Reluctance Motor (PMSynRM) for Electric Vehicles

Author(s):  
Armagan Bozkurt ◽  
Yusuf Oner ◽  
A. Fevzi Baba ◽  
Metin Ersoz
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3739
Author(s):  
Armagan Bozkurt ◽  
Ahmet Fevzi Baba ◽  
Yusuf Oner

Today’s automotive industry has focused its studies on electric vehicles (EVs) or hybrid electric vehicles (HEVs) rather than gasoline-powered vehicles. For this reason, more investment has been made in electric motors with high efficiency, high torque density, and high-power factor to be used in both EVs and HEVs. In this study, an outer-rotor permanent-magnet-assisted synchronous reluctance motor (PMaSynRM) with a new rotor topology was designed for use in an EV. The design has a transversally laminated anisotropic (TLA) rotor structure. In addition, neodymium-iron-boron (NdFeB) magnets were used in rotor topology. The stator slots were designed as distributed windings, so torque ripples are minimized. At the same time, the maximum electromagnetic torque was achieved. The analysis of the designed motor was carried out using the finite element method (FEM). Optimal values of motor parameters were obtained by improving the rotor geometry of the three-phase PMaSynRM in order to obtain maximum torque and minimum torque ripple in the design. The motor is in a 48/8 slot/pole combination, a speed of 750 rpm and a power of 1 kW. The simulation results showed that the design achieved maximum torque and minimum torque ripple.


2021 ◽  
Vol 11 (7) ◽  
pp. 3102
Author(s):  
Md. Zakirul Islam ◽  
Seungdeog Choi ◽  
Malik E. Elbuluk ◽  
Sai Sudheer Reddy Bonthu ◽  
Akm Arafat ◽  
...  

The rare-earth (RE) permanent magnets (PM) have been increasingly adopted in traction motor application. However, the RE PM is expensive, less abundant, and has cost uncertainties due to limited market suppliers. This paper presents a new design of a RE-free five-phase ferrite permanent magnet-assisted synchronous reluctance motor (Fe-PMaSynRM) with the external rotor architecture with a high saliency ratio. In such architecture, the low magnetic coercivity and demagnetization risk of the ferrite PM is the challenge. This limits the number of flux barriers, saliency ratio, and reluctance torque. A precise analytical design procedure of rotor and stator configuration is presented with differential evolution numerical optimizations by utilizing a lumped parameter model. A 3.7 kW prototype is fabricated to validate the proposed idea.


Sign in / Sign up

Export Citation Format

Share Document