Super Hydrophilic Surface Coating for PV Modules

2021 ◽  
pp. 185-209
Author(s):  
Mo Washeem ◽  
Mohammad Rafey ◽  
Mudassir Hasan Khan ◽  
Kashif Faheem ◽  
Zuhaib Naseem ◽  
...  
2018 ◽  
Vol 450 ◽  
pp. 57-65 ◽  
Author(s):  
Kunpeng Wang ◽  
Deyin Hou ◽  
Jun Wang ◽  
Zhangxin Wang ◽  
Binghui Tian ◽  
...  

2018 ◽  
Vol 5 (10) ◽  
pp. 180291 ◽  
Author(s):  
Benjamin G. Cooper ◽  
Stacy L. Chin ◽  
Ruiqing Xiao ◽  
Karen Buch ◽  
Ducksoo Kim ◽  
...  

Personal lubricants can increase user satisfaction with male condoms by reducing friction and yielding a slippery sensation. However, lubricants pose disadvantages of dilution in physiologic fluids and sloughing away over repeated articulations. To address these drawbacks, a latex surface modification, which becomes lubricious in the presence of physiologic fluid, has been developed and evaluated. This study assesses (i) the frictional performance of the lubricious coating compared to non-coated latex and latex lubricated by personal lubricant, (ii) the level of agreement between human-perceived slipperiness and machine-measured friction, and (iii) human preference for a hypothetical male condom containing the lubricious coating. Friction coefficient of the lubricious coating was 53% lower than that of non-coated latex and approximately equal to that afforded by personal lubricant. A touch test and survey of a small population sample ( N = 33) revealed a strong correlation ( R 2 = 0.83) between human-perceived slipperiness and machine-measured friction. A majority of participants (73%) expressed a preference for a condom containing the lubricious coating, agreeing that an inherently slippery condom that remained slippery for a long duration would increase their condom usage. Such a coating shows potential to be an effective strategy for decreasing friction-associated pain, increasing user satisfaction and increasing condom usage.


1987 ◽  
Vol 58 (04) ◽  
pp. 1064-1067 ◽  
Author(s):  
K Kodama ◽  
B Pasche ◽  
P Olsson ◽  
J Swedenborg ◽  
L Adolfsson ◽  
...  

SummaryThe mode of F Xa inhibition was investigated on a thromboresistant surface with end-point attached partially depoly-merized heparin of an approximate molecular weight of 8000. Affinity chromatography revealed that one fourth of the heparin used in surface coating had high affinity for antithrombin III (AT). The heparin surface adsorbed AT from both human plasma and solutions of purified AT. By increasing the ionic strength in the AT solution the existence of high and low affinity sites could be shown. The uptake of AT was measured and the density of available high and low affinity sites was found to be in the range of 5 HTid 11 pic.omoles/cmf, respectively Thus the estimated density of biologically active high and low ailmity heparm respectively would be 40 and 90 ng/cm2 The heparin coating did not take up or exert F Xa inhibition by itself. With AT adsorbed on both high and low affinity heparin the surface had the capacity to inhibit several consecutive aliquots of F Xa exposed to the surface. When mainly high affinity sites were saturated with AT the inhibition capacity was considerably lower. Tt was demonstrated that the density of AT on both high and low affinity heparin determines the F Xa inhibition capacity whereas the amount of AT on high affinity sites limits the rate of the reaction. This implies that during the inhibition of F Xa there is a continuous surface-diffusion of AT from sites of a lower class to the high affinity sites where the F Xa/AT complex is formed and leaves the surface. The ability of the immobilized heparin to catalyze inhibition of F Xa is likely to be an important component for the thromboresistant properties of a heparin coating with non-compromized AT binding sequences.


2019 ◽  
Vol 139 (9) ◽  
pp. 584-591
Author(s):  
Takumi Takashima ◽  
Kazuaki Ikeda

2004 ◽  
Vol 11 (2) ◽  
pp. 133-150 ◽  
Author(s):  
M. B. Dizon ◽  
J. Yang ◽  
F. B. Cheung ◽  
J. L. Rempe ◽  
K. Y. Suh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document