Yaw Control and Shutdown Control

Author(s):  
Adrian Gambier
Keyword(s):  
2009 ◽  
Vol 129 (2) ◽  
pp. 315-323
Author(s):  
Kazuo Suzuki ◽  
Naoki Hoshino ◽  
Noboru Inomata ◽  
Hiroshi Kimura ◽  
Tamiya Fujiwara

2021 ◽  
Vol 158 ◽  
pp. 107721
Author(s):  
Fátima Oliva-Palomo ◽  
Anand Sanchez-Orta ◽  
Hussain Alazki ◽  
Pedro Castillo ◽  
Aldo-Jonathan Muñoz-Vázquez
Keyword(s):  

Author(s):  
Puyi Yang ◽  
Hamidreza Najafi

Abstract The accuracy of analytical wake models applied in wind farm layout optimization (WFLO) problems plays a vital role in the present era that the high-fidelity methods such as LES and RANS are still not able to handle an optimization problem for large wind farms. Based on a verity of analytical wake models developed in the past decades, FLOw Redirection and Induction in Steady State (FLORIS) has been published as a tool integrated several widely used wake models and the expansions for them. This paper compares four wake models selected from FLORIS by applying three classical WFLO scenarios. The results illustrate that the Jensen wake model is the fastest one but the defect of underestimation of velocity deficit is obvious. The Multi Zone model needs to be applied additional tunning on the parameters inside the model to fit specific wind turbines. The Gaussian-Curl wake model as an advanced expansion of the Gaussian wake model does not perform an observable improvement in the current study that the yaw control is not included. The default Gaussian wake model is recommended to be used in the WFLO projects which implemented under the FLROIS framework and has similar wind conditions with the present work.


2018 ◽  
Vol 151 ◽  
pp. 04009
Author(s):  
Hongyu Wang ◽  
Xun Zhao ◽  
Hui Bai ◽  
Cunyue Lu ◽  
Baomin Zhang ◽  
...  

This paper presents the design of a symmetrical quad-rotor biplane tail-sitter VTOL UAV (Vertical Take-off and Landing Unmanned Aerial Vehicle) which is composed of four rotors and two symmetrically mounted fixed wings. This aircraft achieves high accuracy in the attitude control and smooth flight mode transition with four rotors rather than the conventional VTOL UAVs using control surfaces. The proposal of angled rotor mounting is adopted to address the issue of insufficient yaw control authority. The layout of symmetrically mounted fixed wings makes the aircraft have capability of rapid bidirectional flight mode transition to improve maneuverability. To validate the performance of the aircraft, simulation and flight experiments are both implemented. These results show that the aircraft has a rapid yaw response under condition of the stable attitude control. In comparative experiment, it is shown that the aircraft is more flexible than other similar configuration of aircrafts. This symmetrical quad-rotor biplane tail-sitter VTOL UAV will have a wide range of potential applications in the military and civilian areas due to its superior performance..


Sign in / Sign up

Export Citation Format

Share Document