Hydraulic Control Systems for Packing Blocks of Mass Exchange Apparatus. Part 2. Impulse Control Systems for Pulse Liquid Extraction Processes and Liquid-Phase Catalytic Reactors

Author(s):  
N. A. Merentsov ◽  
A. V. Persidskiy ◽  
A. B. Golovanchikov
Author(s):  
Ihor Golinko ◽  
Pavlo Gikalo

The specificity of accelerated software development for microcontrollers is considered. The software development technique for a program-logic controller is presented on the example of an algorithm for controlling the industrial premises microclimate. The method of “dew point” for the control system of industrial air conditioning. The analysis of the functioning of the control system of industrial air conditioning according to the “dew point” method has been carried out and a block diagram of the control system of an artificial microclimate has been proposed. Structurally, the mathematical description of an artificial microclimate system is presented, which takes into account the nonlinearity of mass-exchange processes of air preparation. It can be used by specialists to implement computer-integrated technologies and to analyze and adjust the parameters of the control system of industrial air conditioners.


2021 ◽  
Author(s):  
Fabian Jirasek ◽  
Jakob Burger ◽  
Hans Hasse

The conceptual design of fluid separation processes is particularly challenging if the considered mixtures are poorly specified, since classical thermodynamic models cannot be applied when the composition is unknown. We have recently developed a method (NEAT) to predict activity coefficients in such mixtures. It combines the thermodynamic group contribution concept with the ability of NMR spectroscopy to quantify chemical groups. In the present work, we describe how NEAT can be applied to equilibrium stage simulations of liquid–liquid extraction processes with poorly specified feeds. Only a single 13C NMR spectrum of the feed is needed for predicting the distribution of a target component for different process parameters, such as temperature or extracting agent. The predictions from several test cases are compared to results that are obtained using the full knowledge on the composition of the feed and surprisingly good agreement is found.


2017 ◽  
Vol 7 (4) ◽  
pp. 44 ◽  
Author(s):  
Takeshi Kato ◽  
Shotaro Saito ◽  
Shigekatsu Oshite ◽  
Shukuro Igarashi

A powerful technique for the concentration of rhodium (Rh) in plating wastewater was developed. The technique entails complexing Rh with 1-(2-pyridylazo)-2-naphthol (PAN) followed by homogeneous liquid–liquid extraction (HoLLE) with Zonyl FSA. The optimum HoLLE conditions were determined as follows: [ethanol]T = 30.0 vol.%, pH = 4.00, and Rh:PAN = 1:5. Under these optimum conditions, 88.1% of Rh was extracted into the sedimented liquid phase. After phase separation, the volume ratio [aqueous phase (Va) /sedimented liquid phase (Vs)] of Va and Vs was 1000 (50 mL → 0.050 mL). We then applied the new method to wastewater generated by the plating industry. The phase separation was satisfactorily achieved when the volume was scaled up to 1000 mL of the actual wastewater; 84.7% of Rh was extracted into the sedimented liquid phase. After phase separation, Va/Vs was 588 (1000 mL - 1.70 mL).


Sign in / Sign up

Export Citation Format

Share Document