catalytic reactors
Recently Published Documents


TOTAL DOCUMENTS

466
(FIVE YEARS 75)

H-INDEX

39
(FIVE YEARS 5)

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1472
Author(s):  
Gianluca Landi

Structured catalytic reactors are widely used in the automotive sector for exhaust after-treatment, thus representing the state-of-art technology in this sector [...]


2021 ◽  
Vol 21 (6) ◽  
pp. 406-412
Author(s):  
G. B. Narochnyi ◽  
A. P. Savost'yanov ◽  
I. N. Zubkov ◽  
A. V. Dulnev ◽  
R. E. Yakovenko

The possibility to use the zinc-copper catalyst NIAP-06-06 for steam conversion of CO in the synthesis of methanol was explored. The catalyst was characterized by means of TPR H2, XRD and SEM methods and tested in the methanol synthesis in flow and circulation modes at a pressure of 5.0 MPa and gas hourly space velocity of 3000 h–1 over a temperature range of 220–260 °С. The catalyst was shown to be highly active and selective toward the methanol synthesis from a gas with the H2 /СО ratio 3.9, which is obtained by steam conversion of methane. The use of tubular catalytic reactors connected in series in the flow-circulation mode makes it possible to convert more than 70 % of CO and obtain crude methanol with the concentration of 95 %. In the circulation mode, a methanol output of 427.7 kg/(m3 cat·h) was achieved on the catalyst.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1395
Author(s):  
Hammad Alotaibi ◽  
Mohamed R. Eid

This paper discusses the Darcy–Forchheimer three dimensional (3D) flow of a permeable nanofluid through a convectively heated porous extending surface under the influences of the magnetic field and nonlinear radiation. The higher-order chemical reactions with activation energy and heat source (sink) impacts are considered. We integrate the nanofluid model by using Brownian diffusion and thermophoresis. To convert PDEs (partial differential equations) into non-linear ODEs (ordinary differential equations), an effective, self-similar transformation is used. With the fourth–fifth order Runge–Kutta–Fehlberg (RKF45) approach using the shooting technique, the consequent differential system set is numerically solved. The influence of dimensionless parameters on velocity, temperature, and nanoparticle volume fraction profiles is revealed via graphs. Results of nanofluid flow and heat as well as the convective heat transport coefficient, drag force coefficient, and Nusselt and Sherwood numbers under the impact of the studied parameters are discussed and presented through graphs and tables. Numerical simulations show that the increment in activation energy and the order of the chemical reaction boosts the concentration, and the reverse happens with thermal radiation. Applications of such attractive nanofluids include plastic and rubber sheet production, oil production, metalworking processes such as hot rolling, water in reservoirs, melt spinning as a metal forming technique, elastic polymer substances, heat exchangers, emollient production, paints, catalytic reactors, and glass fiber production.


Author(s):  
P. A. Nikulshin ◽  
V. S. Dorokhov ◽  
O. L. Ovsienko ◽  
M. V. Rogozina ◽  
N. A. Anikeev ◽  
...  

2021 ◽  
pp. 129-147
Author(s):  
Hamid Arastoopour ◽  
Dimitri Gidaspow ◽  
Robert W. Lyczkowski

Sign in / Sign up

Export Citation Format

Share Document