Lifetime Prediction for the Jaw Crusher by the Criterion of Toggle Fatigue Strength Based on the Application of the Kinetic Concept of Material Destruction

Author(s):  
M. Slobodianskii
2020 ◽  
Vol 4 (97) ◽  
pp. 69-76
Author(s):  
IGOR N. SILVERSTOV

A stochastic approach has been developed to evaluate fatigue strength using elements of the fracture mechanics. The article presents a method for determining the initial parameters of statistical distributions. It also considers the method for constructing a fatigue curve for a component of any size and configuration with any given probability of failure.


Author(s):  
Arvind Keprate ◽  
R. M. Chandima Ratnayake

Abstract Accurate prediction of the fatigue strength of steels is vital, due to the extremely high cost (and time) of fatigue testing and the often fatal consequences of fatigue failures. The work presented in this paper is an extension of the previous paper submitted to OMAE 2019. The main objective of this manuscript is to utilize Artificial Intelligence (AI) to predict fatigue strength, based on composition and process parameters, using the fatigue dataset for carbon and low alloy steel available from the National Institute of Material Science (NIMS) database, MatNavi. A deep learning framework Keras is used to build a Neural Network (NN), which is trained and tested on the data set obtained from MatNavi. The fatigue strength values estimated using NN are compared to the values predicted by the gradient boosting algorithm, which was the most accurate model in the OMAE 2019 paper. The comparison is done using metrics such as root mean square error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R2) and Explained Variance Score (EVS). Thereafter, the trained NN model is used to make predictions of fatigue strength for the simulated data (1 million samples) of input parameters, which is then used to generate conditional probability tables for the Bayesian Network (BN). The main advantage of using BN over previously used machine learning algorithms is that BN can be used to make both forward and backward propagation during the Bayesian inference. A case study illustrating the applicability of the proposed approach is also presented. Furthermore, a dashboard is developed using PowerBI, which can be used by practicing engineers to estimate fatigue strength based on composition and process parameters.


Author(s):  
Arvind Keprate ◽  
R. M. Chandima Ratnayake

Abstract Accurately estimating the fatigue strength of steels is vital, due to the extremely high cost (and time) of fatigue testing and often fatal consequences of fatigue failures. The main objective of this manuscript is to perform data mining on the fatigue dataset for steel available from the National Institute of Material Science (NIMS) MatNavi. The cross-industry process for data mining (CRISP-DM) approach was followed in the paper, in order to gain meaningful insights from the dataset and to estimate the fatigue strength of carbon and low alloy steels, using composition and processing parameters. Of the six steps of the CRISP-DM approach, special emphasis has been placed on steps 2 to 5 (i.e. data understanding, data preparation, modeling and evaluation). In step 4 (i.e. modeling), a range of machine learning (parametric and non-parametric) is explored to predict the fatigue strength, based on the composition and process parameters. Various algorithms were trained and tested on the dataset and finally evaluated, using metrics such as root mean square error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R2) and Explained Variance Score (EVS).


Author(s):  
Osamu Watanabe ◽  
Akihiro Matsuda

Stress and strain locus in inelastic deformation is important to evaluate the fatigue strength and creep-fatigue strength. The stress redistribution locus (SRL) of perforated plate under displacement-controlled condition has been studied so far by the present authors. The SRL curve under displacement-controlled loading is almost independent of the employed constitutive equation, and the SRL takes the similar curve as Neuber’s one, if the inelastic stress/strain is non-dimensionalized by elastic solutions. However, the SRL under force-controlled loading is not studied yet, which is closely related to collapse load and fatigue strength. The response under thermal loading is also important for fatigue strength and creep-fatigue strength. Based on the 3D FE solutions under force-controlled loading or thermal loading for the perforated plate, the nonlinear feature will be discussed.


Sign in / Sign up

Export Citation Format

Share Document