scholarly journals Evaluation of Surface Fatigue Strength Based on Surface Temperature. (Surface Temperature Calculation for Rolling-Sliding Contact).

2001 ◽  
Vol 44 (1) ◽  
pp. 217-222 ◽  
Author(s):  
Gang DENG ◽  
Tsutomu NAKANISHI
Author(s):  
Gang Deng ◽  
Tsutomu Nakanishi ◽  
Hironori Ikeda

Abstract Surface temperature is resulted by not only the load and dimension at the contact point but also the sliding velocity, rolling velocity, surface roughness, lubrication condition and etc. So, the surface fatigue strength of such as roller and gear may be evaluated more exactly and simply by use of the surface temperature or an index including the surface temperature than the Hertzian stress. In this research, the surface temperatures of rollers in different rolling and sliding conditions were measured with a thermocouple. The effects of the load P, mean velocity Vm and sliding velocity Vs on the surface temperature are clarified. An experimental formula, which expresses a linear relationship between the surface temperature and the P0.86Vs1.31Vm−0.83 value, is presented to calculate the surface temperature. This formula is also confirmed available for the gear tooth surface temperature calculation by comparison of calculated temperature and the measured temperature on the gear tooth surface. The relationship between the surface temperature and the number of load cycles of rollers are investigated, the necessity and rationality of the surface fatigue strength evaluation considering the surface temperature are discussed.


Author(s):  
Masana Kato ◽  
Gang Deng ◽  
Masashi Yamanaka ◽  
Ryoji Yamamoto ◽  
Noboru Ono ◽  
...  

Abstract The surface fatigue failures of the traction drive rollers are different to that of gears and bearings because of the high traction force, skew and small slip ratio. In this research, fatigue tests of traction rollers were performed in different slip ratios and skew angles. The effects of running conditions on the fatigue lives of traction drive rollers are clarified and explained based on the surface crack growth and wear situations. Although a higher slip ratio will make a lower fatigue life, the fatigue strength will increase inversley under the skew conditions, because of the differences in mechanical and tribological condition for surface crack growth and the severe surface wear, which diminishes the surface crack length. For evaluation of the effects of such as slip ratio and skew on the fatigue strength of traction rollers, a new method is put forward in which the relationship between the surface temperature index and fatigue life is used instead of S-N curve.


Author(s):  
Arvind Keprate ◽  
R. M. Chandima Ratnayake

Abstract Accurate prediction of the fatigue strength of steels is vital, due to the extremely high cost (and time) of fatigue testing and the often fatal consequences of fatigue failures. The work presented in this paper is an extension of the previous paper submitted to OMAE 2019. The main objective of this manuscript is to utilize Artificial Intelligence (AI) to predict fatigue strength, based on composition and process parameters, using the fatigue dataset for carbon and low alloy steel available from the National Institute of Material Science (NIMS) database, MatNavi. A deep learning framework Keras is used to build a Neural Network (NN), which is trained and tested on the data set obtained from MatNavi. The fatigue strength values estimated using NN are compared to the values predicted by the gradient boosting algorithm, which was the most accurate model in the OMAE 2019 paper. The comparison is done using metrics such as root mean square error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R2) and Explained Variance Score (EVS). Thereafter, the trained NN model is used to make predictions of fatigue strength for the simulated data (1 million samples) of input parameters, which is then used to generate conditional probability tables for the Bayesian Network (BN). The main advantage of using BN over previously used machine learning algorithms is that BN can be used to make both forward and backward propagation during the Bayesian inference. A case study illustrating the applicability of the proposed approach is also presented. Furthermore, a dashboard is developed using PowerBI, which can be used by practicing engineers to estimate fatigue strength based on composition and process parameters.


Author(s):  
Arvind Keprate ◽  
R. M. Chandima Ratnayake

Abstract Accurately estimating the fatigue strength of steels is vital, due to the extremely high cost (and time) of fatigue testing and often fatal consequences of fatigue failures. The main objective of this manuscript is to perform data mining on the fatigue dataset for steel available from the National Institute of Material Science (NIMS) MatNavi. The cross-industry process for data mining (CRISP-DM) approach was followed in the paper, in order to gain meaningful insights from the dataset and to estimate the fatigue strength of carbon and low alloy steels, using composition and processing parameters. Of the six steps of the CRISP-DM approach, special emphasis has been placed on steps 2 to 5 (i.e. data understanding, data preparation, modeling and evaluation). In step 4 (i.e. modeling), a range of machine learning (parametric and non-parametric) is explored to predict the fatigue strength, based on the composition and process parameters. Various algorithms were trained and tested on the dataset and finally evaluated, using metrics such as root mean square error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R2) and Explained Variance Score (EVS).


Sign in / Sign up

Export Citation Format

Share Document