Unidirectional Flow in Rectilinear Vessels

2021 ◽  
pp. 97-114
Author(s):  
Gianni Pedrizzetti
Keyword(s):  
2007 ◽  
Vol 334-335 ◽  
pp. 209-212 ◽  
Author(s):  
Akbar Shojaei ◽  
A. Spah

In the present investigation, mold filling process of resin injection/compression molding (RI/CM) is compared with resin transfer molding (RTM) for simple mold geometry. To do this, analytical solutions are obtained for RI/CM in unidirectional flow. Based on the analytical solutions, flow front progression and pressure distribution are compared with RTM at different fiber content. The results indicate that the RI/CM reduces the mold filling time significantly, particularly for composite parts with higher fiber content.


1985 ◽  
Vol 160 ◽  
pp. 281-295 ◽  
Author(s):  
F. A. Milinazzo ◽  
P. G. Saffman

Computations of two-dimensional solutions of the Navier–Stokes equations are carried out for finite-amplitude waves on steady unidirectional flow. Several cases are considered. The numerical method employs pseudospectral techniques in the streamwise direction and finite differences on a stretched grid in the transverse direction, with matching to asymptotic solutions when unbounded. Earlier results for Poiseuille flow in a channel are re-obtained, except that attention is drawn to the dependence of the minimum Reynolds number on the physical constraint of constant flux or constant pressure gradient. Attempts to calculate waves in Couette flow by continuation in the velocity of a channel wall fail. The asymptotic suction boundary layer is shown to possess finite-amplitude waves at Reynolds numbers orders of magnitude less than the critical Reynolds number for linear instability. Waves in the Blasius boundary layer and unsteady Rayleigh profile are calculated by employing the artifice of adding a body force to cancel the spatial or temporal growth. The results are verified by comparison with perturbation analysis in the vicinity of the linear-instability critical Reynolds numbers.


2007 ◽  
Vol 71 (3) ◽  
pp. 267-277 ◽  
Author(s):  
Frithjof Lutscher ◽  
Edward McCauley ◽  
Mark A. Lewis

2018 ◽  
Vol 115 (48) ◽  
pp. E11349-E11358 ◽  
Author(s):  
Matthew D. Krause ◽  
Ru-Ting Huang ◽  
David Wu ◽  
Tzu-Pin Shentu ◽  
Devin L. Harrison ◽  
...  

Biomechanical cues dynamically control major cellular processes, but whether genetic variants actively participate in mechanosensing mechanisms remains unexplored. Vascular homeostasis is tightly regulated by hemodynamics. Exposure to disturbed blood flow at arterial sites of branching and bifurcation causes constitutive activation of vascular endothelium contributing to atherosclerosis, the major cause of coronary artery disease (CAD) and ischemic stroke (IS). Conversely, unidirectional flow promotes quiescent endothelium. Genome-wide association studies (GWAS) have identified chromosome 1p32.2 as strongly associated with CAD/IS; however, the causal mechanism related to this locus remains unknown. Using statistical analyses, assay of transposase accessible chromatin with whole-genome sequencing (ATAC-seq), H3K27ac/H3K4me2 ChIP with whole-genome sequencing (ChIP-seq), and CRISPR interference in human aortic endothelial cells (HAECs), our results demonstrate that rs17114036, a common noncoding polymorphism at 1p32.2, is located in an endothelial enhancer dynamically regulated by hemodynamics. CRISPR-Cas9–based genome editing shows that rs17114036-containing region promotes endothelial quiescence under unidirectional shear stress by regulating phospholipid phosphatase 3 (PLPP3). Chromatin accessibility quantitative trait locus (caQTL) mapping using HAECs from 56 donors, allelic imbalance assay from 7 donors, and luciferase assays demonstrate that CAD/IS-protective allele at rs17114036 in PLPP3 intron 5 confers increased endothelial enhancer activity. ChIP-PCR and luciferase assays show that CAD/IS-protective allele at rs17114036 creates a binding site for transcription factor Krüppel-like factor 2 (KLF2), which increases the enhancer activity under unidirectional flow. These results demonstrate that a human SNP contributes to critical endothelial mechanotransduction mechanisms and suggest that human haplotypes and related cis-regulatory elements provide a previously unappreciated layer of regulatory control in cellular mechanosensing mechanisms.


1996 ◽  
Vol 33 (6) ◽  
pp. 899-912 ◽  
Author(s):  
E M Palmeira ◽  
R J Fannin ◽  
Y P Vaid

The behaviour of soil–geotextile systems in filtration tests is reported for nonwoven geotextiles under unidirectional flow. A new apparatus was developed to preform filtration tests under an applied vertical stress, and tests were then conducted with different soils and nonwoven geotextiles in order to evaluate the clogging potential and retention capacity of these materials under rather severe combinations of geotextile and soil characteristics. Results show that the geotextiles perfomed well and that observed permeability losses were acceptable even for gradient ratios close to 3. No progressive piping was observed, and it is believed that the retention capacity of the geotextiles may be influenced by their manufacturing process. In general, theoretical predictions for the maximum particle size passing through the geotextile compared well with measurements. Key words: geotextiles, filtration, gradient ratio, permeability, soil retention, clogging.


Author(s):  
Ming Zheng ◽  
Siddhartha Banerjee ◽  
Xiaohong Xu ◽  
Usman Asad ◽  
Xiaoye Han ◽  
...  

Empirical and theoretical studies are made between the inlet and central heating schemes in a flow reversal embedment of diesel aftertreatment converters in order to investigate the influences of gas flow, heat transfer, chemical reaction, oxygen concentration, and substrate properties. The periodic flow reversal converter is found effective to treat engine exhausts that are difficult to cope with conventional unidirectional flow converters. However, the previous work indicates that the exhaust temperature from modern diesel engines is commonly insufficient to sustain a high conversion or regeneration rate and thus supplemental heating techniques are commonly applied. A technique of fuelling at the central region of a flow-reversal embedment is found more energy-efficient to raise the temperature of the catalytic flow-bed and therefore to drastically reduce the supplemental heating to the substrate. An effective fuel delivery technique has been tested to improve the fuel dispersion of the central fuel delivery strategy at various engine-out exhaust temperatures, compositions, and flow rates.


1988 ◽  
Vol 1 (21) ◽  
pp. 23
Author(s):  
Toru Sawaragi ◽  
Ichiro Deguchi ◽  
San-Kil Park

A wave overtopping rate from a sea dike of various toe depths is formulated based on a weir model in an unidirectional flow. To evaluated the wave overtopping rate from a seadike on an artificial reef by the weir model, a numerical procedure for predicting wave transformations including the effect of forced wave breaking on the reef is constructed. After confirming the applicability of the model through experiments with regular and irregular waves, the effect of artificial reef on wave overtopping is discussed. So-called individual wave analysis method is shown to he applicable to the wave overtopping caused by irregular waves.


Sign in / Sign up

Export Citation Format

Share Document