scholarly journals REDUCTION OF WAVE OVERTOPPING RATE BY THE USE OF ARTIFICIAL REEFS

1988 ◽  
Vol 1 (21) ◽  
pp. 23
Author(s):  
Toru Sawaragi ◽  
Ichiro Deguchi ◽  
San-Kil Park

A wave overtopping rate from a sea dike of various toe depths is formulated based on a weir model in an unidirectional flow. To evaluated the wave overtopping rate from a seadike on an artificial reef by the weir model, a numerical procedure for predicting wave transformations including the effect of forced wave breaking on the reef is constructed. After confirming the applicability of the model through experiments with regular and irregular waves, the effect of artificial reef on wave overtopping is discussed. So-called individual wave analysis method is shown to he applicable to the wave overtopping caused by irregular waves.

2018 ◽  
Vol 85 ◽  
pp. 1136-1140
Author(s):  
Hong-Yeon Cho ◽  
Hyuk-Jin Choi ◽  
Shin-Taek Jeong ◽  
Dong-Hui Ko

1988 ◽  
Vol 1 (21) ◽  
pp. 37 ◽  
Author(s):  
Masahiko Isobe

In the individual wave analysis of short-crested irregular waves, the wave direction of an individual wave is an important quantity as well as the wave height and period. In this paper, the joint probability density of the wave height and direction is derived theoretically on the assumption of a narrow-banded frequency spectrum. A field experiment was carried out to examine the validity of the theory. The measured joint distribution agreed well with that predicted by the theory.


2011 ◽  
pp. 1889-1897
Author(s):  
T. OTA ◽  
Y. MATSUMI ◽  
Y. KURATA ◽  
K. OHNO

Author(s):  
Anskey A. Miranda ◽  
Fred P. Turner ◽  
Nigel Barltrop

This paper presents a study of the analysis methodologies used to predict the most likely response of flexibles in a subsea environment, with the aim of determining an efficient and reliable prediction methodology. The most accurate method involves simulating multiple wave realisations of a real world sea state, i.e. irregular waves, and post-processing the results to determine the most probable maximum (MPM). Due to the computationally intensive nature of this approach, however, regular wave analysis is typically used to determine flexible response. This approach considers the maximum wave within a design storm at a desired period; the choice of periods may leave room for uncertainty in the conservatism of the approach. With proper screening, regular wave analysis can be a valid yet overly conservative approach resulting in over design and additional cost. However, if screened incorrectly, there is a possibility that the choice of periods could give results that are under conservative. In addition to regular wave analysis, the paper presents two alternative methodologies to determine the most likely response, with the focus on reducing the computational resources required. The first alternative is an ‘Irregular Wave Screen’ approach in which the wave train is screened at areas of interest for waves within a user defined threshold of the maximum wave height, in addition to other user defined parameters. Only waves within these parameters are simulated to determine responses. The second alternative is the ‘New Wave’ approach, which models the most probable wave elevation around the maximum wave crest. The calculated new wave is then placed at the desired location to determine responses. The responses of the Regular, Irregular Wave Screen and New Wave methodologies are compared with the Irregular MPM approach to determine their feasibility to predict the response of flexibles in a real world irregular sea state with lower computational requirements.


1984 ◽  
Vol 106 (1) ◽  
pp. 113-119 ◽  
Author(s):  
J. M. Niedzwecki

The behavior of waves interacting with islands has gained renewed interest with the construction of exploratory drilling islands in the Arctic. This paper focuses upon the behavior of waves incident upon axisymmetric islands characterized by circular contours which vary with water depth. The island profiles of Arthur and Pocinki, which have closed form solutions, and a single tier conical island are examined. A new dimensionless formulation of Arthur’s ray theory and an extremely accurate numerical procedure to evaluate the ray integrals are presented. It is shown that each island profile leads to a distinct wave pattern about the island. These wave patterns are presented in figures which portray the wave capture and wave breaking about circular islands. It is intended that the methodology presented be used to initially assess trends and to evaluate the need for more refined analyses.


Author(s):  
Alistair Becker ◽  
Michael B Lowry ◽  
D Stewart Fielder ◽  
Matthew D Taylor

Fisheries enhancement initiatives including marine stocking and artificial reef deployments are becoming increasingly common in many parts of the world. Combining the two by releasing hatchery reared fish onto artificial reefs is used in sea-ranching operations but is an approach rarely adopted for recreational fisheries. Yellowtail kingfish (Seriola lalandi) form a valuable recreational fishery in Australia and in 2018 a pilot stocking program was initiated to enhance this fishery. Fish were released onto estuarine artificial reefs in Botany Bay to evaluate if estuarine artificial reefs are suitable release habitat for juvenile yellowtail kingfish and to monitor their dispersal patterns using acoustic telemetry and a tag-recapture program. Both approaches showed similar patterns, indicating juvenile yellowtail kingfish rapidly dispersed from the release location and can travel at least 60 km during their first weeks in the wild. Twenty percent of the acoustically tagged fish entered nearby estuaries to the north and south and tagged fish were also recaptured in these estuaries, indicating that the estuaries provide habitat for juveniles. There was little interaction between stocked fish and two large coastal artificial reefs positioned near Botany Bay. Stocked yellowtail kingfish will likely disperse rapidly from release locations which is consistent with their pelagic life history. While this may present challenges to fisheries managers, increasing release numbers to maintain stocking densities over a broader area may provide a solution. Future releases of fish on coastal natural and artificial reefs are an important next step in refining stocking practices for this species and will help further identify key juvenile habitats.


Author(s):  
E. Charbonnel ◽  
F. Carnus ◽  
S. Ruitton ◽  
L. Le Direac’h ◽  
J.-G. Harmelin ◽  
...  

Author(s):  
Pengyao Yu ◽  
Guoqing Feng ◽  
Huilong Ren ◽  
Xiaodong Zhao

When the ship navigates in the sea, the dynamic deformation of the ship hull will be induced by the waves. The relative large deformation of the ship hull induced by the waves may affect the operation of some certain equipment. In order to keep the equipment operating normally, the influence of the ship deformation should be evaluated. The method for the calculation and analysis of the ship deformation is discussed here. The wave loads of the ship in unit regular wave amplitude are calculated based on 3-D linear potential flow theory. The sea pressure and inertial force of the ship are obtained and applied to the global finite element model of the ship. Under the quasi-static assumption, the structural deformation response in unit regular wave amplitude is calculated with the use of finite element analysis. Then, the amplitude frequency response of the relative deformation between two arbitrary positions in the hull is achieved. The history of the deformation can be obtained based on the simulation of deformation response in irregular waves or the modal superposition method. With the help of spectral analysis method, the spectrum of the relative deformation between two arbitrary positions in the hull may be obtained. The statistical analysis of ship hull deformation in the short-term sea state is realized. Considering the critical value of ship deformation, the reliability analysis method is adopted to assess the ability of hull to resist the deformation.


Sign in / Sign up

Export Citation Format

Share Document