Moderate, Unilateral Hippocampal Sclerosis

2022 ◽  
pp. 7-10
Author(s):  
John M. Stern ◽  
Noriko Salamon
2019 ◽  
Vol 24 (2) ◽  
pp. 200-208
Author(s):  
Ravindra Arya ◽  
Francesco T. Mangano ◽  
Paul S. Horn ◽  
Sabrina K. Kaul ◽  
Serena K. Kaul ◽  
...  

OBJECTIVEThere is emerging data that adults with temporal lobe epilepsy (TLE) without a discrete lesion on brain MRI have surgical outcomes comparable to those with hippocampal sclerosis (HS). However, pediatric TLE is different from its adult counterpart. In this study, the authors investigated if the presence of a potentially epileptogenic lesion on presurgical brain MRI influences the long-term seizure outcomes after pediatric temporal lobectomy.METHODSChildren who underwent temporal lobectomy between 2007 and 2015 and had at least 1 year of seizure outcomes data were identified. These were classified into lesional and MRI-negative groups based on whether an epilepsy-protocol brain MRI showed a lesion sufficiently specific to guide surgical decisions. These patients were also categorized into pure TLE and temporal plus epilepsies based on the neurophysiological localization of the seizure-onset zone. Seizure outcomes at each follow-up visit were incorporated into a repeated-measures generalized linear mixed model (GLMM) with MRI status as a grouping variable. Clinical variables were incorporated into GLMM as covariates.RESULTSOne hundred nine patients (44 females) were included, aged 5 to 21 years, and were classified as lesional (73%), MRI negative (27%), pure TLE (56%), and temporal plus (44%). After a mean follow-up of 3.2 years (range 1.2–8.8 years), 66% of the patients were seizure free for ≥ 1 year at last follow-up. GLMM analysis revealed that lesional patients were more likely to be seizure free over the long term compared to MRI-negative patients for the overall cohort (OR 2.58, p < 0.0001) and for temporal plus epilepsies (OR 1.85, p = 0.0052). The effect of MRI lesion was not significant for pure TLE (OR 2.64, p = 0.0635). Concordance of ictal electroencephalography (OR 3.46, p < 0.0001), magnetoencephalography (OR 4.26, p < 0.0001), and later age of seizure onset (OR 1.05, p = 0.0091) were associated with a higher likelihood of seizure freedom. The most common histological findings included cortical dysplasia types 1B and 2A, HS (40% with dual pathology), and tuberous sclerosis.CONCLUSIONSA lesion on presurgical brain MRI is an important determinant of long-term seizure freedom after pediatric temporal lobectomy. Pediatric TLE is heterogeneous regarding etiologies and organization of seizure-onset zones with many patients qualifying for temporal plus nosology. The presence of an MRI lesion determined seizure outcomes in patients with temporal plus epilepsies. However, pure TLE had comparable surgical seizure outcomes for lesional and MRI-negative groups.


2021 ◽  
Vol 22 (8) ◽  
pp. 3860
Author(s):  
Elisa Ren ◽  
Giulia Curia

Temporal lobe epilepsy (TLE) is one of the most common types of focal epilepsy, characterized by recurrent spontaneous seizures originating in the temporal lobe(s), with mesial TLE (mTLE) as the worst form of TLE, often associated with hippocampal sclerosis. Abnormal epileptiform discharges are the result, among others, of altered cell-to-cell communication in both chemical and electrical transmissions. Current knowledge about the neurobiology of TLE in human patients emerges from pathological studies of biopsy specimens isolated from the epileptogenic zone or, in a few more recent investigations, from living subjects using positron emission tomography (PET). To overcome limitations related to the use of human tissue, animal models are of great help as they allow the selection of homogeneous samples still presenting a more various scenario of the epileptic syndrome, the presence of a comparable control group, and the availability of a greater amount of tissue for in vitro/ex vivo investigations. This review provides an overview of the structural and functional alterations of synaptic connections in the brain of TLE/mTLE patients and animal models.


GeroScience ◽  
2021 ◽  
Author(s):  
Caitlin S. Latimer ◽  
Nicole F. Liachko

AbstractAlzheimer’s disease (AD) is traditionally defined by the presence of two types of protein aggregates in the brain: amyloid plaques comprised of the protein amyloid-β (Aβ) and neurofibrillary tangles containing the protein tau. However, a large proportion (up to 57%) of AD patients also have TDP-43 aggregates present as an additional comorbid pathology. The presence of TDP-43 aggregates in AD correlates with hippocampal sclerosis, worse brain atrophy, more severe cognitive impairment, and more rapid cognitive decline. In patients with mixed Aβ, tau, and TDP-43 pathology, TDP-43 may interact with neurodegenerative processes in AD, worsening outcomes. While considerable progress has been made to characterize TDP-43 pathology in AD and late-onset dementia, there remains a critical need for mechanistic studies to understand underlying disease biology and develop therapeutic interventions. This perspectives article reviews the current understanding of these processes from autopsy cohort studies and model organism-based research, and proposes targeting neurotoxic synergies between tau and TDP-43 as a new therapeutic strategy for AD with comorbid TDP-43 pathology.


2021 ◽  
pp. 106638
Author(s):  
Lei Zhao ◽  
Xufei Zhang ◽  
Yishan Luo ◽  
Jianxin Hu ◽  
Chenyang Liang ◽  
...  

Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yi-He Wang ◽  
Si-Chang Chen ◽  
Peng-Hu Wei ◽  
Kun Yang ◽  
Xiao-Tong Fan ◽  
...  

Abstract Introduction In this report, we aim to describe the design for the randomised controlled trial of Stereotactic electroencephalogram (EEG)-guided Radiofrequency Thermocoagulation versus Anterior Temporal Lobectomy for Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (STARTS). Mesial temporal lobe epilepsy (mTLE) is a classical subtype of temporal lobe epilepsy that often requires surgical intervention. Although anterior temporal lobectomy (ATL) remains the most popular treatment for mTLE, accumulating evidence has indicated that ATL can cause tetartanopia and memory impairments. Stereotactic EEG (SEEG)-guided radiofrequency thermocoagulation (RF-TC) is a non-invasive alternative associated with lower seizure freedom but greater preservation of neurological function. In the present study, we aim to compare the safety and efficacy of SEEG-guided RF-TC and classical ATL in the treatment of mTLE. Methods and analysis STARTS is a single-centre, two-arm, randomised controlled, parallel-group clinical trial. The study includes patients with typical mTLE over the age of 14 who have drug-resistant seizures for at least 2 years and have been determined via detailed evaluation to be surgical candidates prior to randomisation. The primary outcome measure is the cognitive function at the 1-year follow-up after treatment. Seizure outcomes, visual field abnormalities after surgery, quality of life, ancillary outcomes, and adverse events will also be evaluated at 1-year follow-up as secondary outcomes. Discussion SEEG-guided RF-TC for mTLE remains a controversial seizure outcome but has the advantage for cognitive and visual field protection. This is the first RCT studying cognitive outcomes and treatment results between SEEG-guided RF-TC and standard ATL for mTLE with hippocampal sclerosis. This study may provide higher levels of clinical evidence for the treatment of mTLE. Trial registration ClinicalTrials.gov NCT03941613. Registered on May 8, 2019. The STARTS protocol has been registered on the US National Institutes of Health. The status of the STARTS was recruiting and the estimated study completion date was December 31, 2021.


Author(s):  
Nathália Stela Visoná de Figueiredo ◽  
Larissa Botelho Gaça ◽  
Idaiane Batista Assunção-Leme ◽  
Lenon Mazetto ◽  
Maria Teresa Fernandes Castilho Garcia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document