Deep Semantic Edge for Cell Counting and Localization in Time-Lapse Microscopy Images

2021 ◽  
pp. 337-349
Author(s):  
Tianwei Zhang ◽  
Kun Sun
2018 ◽  
Author(s):  
Samuel F. M. Hart ◽  
David Skelding ◽  
Adam J. Waite ◽  
Justin Burton ◽  
Li Xie ◽  
...  

AbstractMicrobes live in dynamic environments where nutrient concentrations fluctuate. Quantifying fitness (birth and death) in a wide range of environments is critical for understanding microbial evolution as well as ecological interactions where one species alters the fitness of another. Here, using high-throughput time-lapse microscopy, we have quantified howSaccharomyces cerevisiaemutants incapable of synthesizing an essential metabolite grow or die in various concentrations of the required metabolite. We establish that cells normally expressing fluorescent proteins lose fluorescence upon death and that the total fluorescence in an imaging frame is proportional to the number of live cells even when cells form multiple layers. We validate our microscopy approach of measuring birth and death rates using flow cytometry, cell counting, and chemostat culturing. For lysine-requiring cells, very low concentrations of lysine are not detectably consumed and do not support cell birth, but delay the onset of death phase and reduce the death rate. In contrast, in low hypoxanthine, hypoxanthine-requiring cells can produce new cells, yet also die faster than in the absence of hypoxanthine. For both strains, birth rates under various metabolite concentrations are better described by the sigmoidal-shaped Moser model than the well-known Monod model, while death rates depend on the metabolite concentration and can vary with time. Our work reveals how time-lapse microscopy can be used to discover non-intuitive microbial dynamics and to quantify growth rates in many environments.


2020 ◽  
Vol 10 (18) ◽  
pp. 6187
Author(s):  
Leonardo Rundo ◽  
Andrea Tangherloni ◽  
Darren R. Tyson ◽  
Riccardo Betta ◽  
Carmelo Militello ◽  
...  

Advances in microscopy imaging technologies have enabled the visualization of live-cell dynamic processes using time-lapse microscopy imaging. However, modern methods exhibit several limitations related to the training phases and to time constraints, hindering their application in the laboratory practice. In this work, we present a novel method, named Automated Cell Detection and Counting (ACDC), designed for activity detection of fluorescent labeled cell nuclei in time-lapse microscopy. ACDC overcomes the limitations of the literature methods, by first applying bilateral filtering on the original image to smooth the input cell images while preserving edge sharpness, and then by exploiting the watershed transform and morphological filtering. Moreover, ACDC represents a feasible solution for the laboratory practice, as it can leverage multi-core architectures in computer clusters to efficiently handle large-scale imaging datasets. Indeed, our Parent-Workers implementation of ACDC allows to obtain up to a 3.7× speed-up compared to the sequential counterpart. ACDC was tested on two distinct cell imaging datasets to assess its accuracy and effectiveness on images with different characteristics. We achieved an accurate cell-count and nuclei segmentation without relying on large-scale annotated datasets, a result confirmed by the average Dice Similarity Coefficients of 76.84 and 88.64 and the Pearson coefficients of 0.99 and 0.96, calculated against the manual cell counting, on the two tested datasets.


2020 ◽  
Author(s):  
Leonardo Rundo ◽  
Andrea Tangherloni ◽  
Darren R. Tyson ◽  
Riccardo Betta ◽  
Carmelo Militello ◽  
...  

AbstractAdvances in microscopy imaging technologies have enabled the visualization of live-cell dynamic processes using time-lapse microscopy imaging. However, modern methods exhibit several limitations related to the training phases and to time constraints, hindering their application in the laboratory practice. In this work, we present a novel method, named Automated Cell Detection and Counting (ACDC), designed for activity detection of fluorescent labeled cell nuclei in time-lapse microscopy. ACDC overcomes the limitations of the literature methods, by first applying bilateral filtering on the original image to smooth the input cell images while preserving edge sharpness, and then by exploiting the watershed transform and morphological filtering. Moreover, ACDC represents a feasible solution for the laboratory practice, as it can leverage multi-core architectures in computer clusters to efficiently handle large-scale imaging datasets. Indeed, our Parent-Workers implementation of ACDC allows to obtain up to a 3.7× speed-up compared to the sequential counterpart. ACDC was tested on two distinct cell imaging datasets to assess its accuracy and effectiveness on images with different characteristics. We achieved an accurate cell-count and nuclei segmentation without relying on large-scale annotated datasets, a result confirmed by the average Dice Similarity Coefficients of 76.84 and 88.64 and the Pearson coefficients of 0.99 and 0.96, calculated against the manual cell counting, on the two tested datasets.


Sign in / Sign up

Export Citation Format

Share Document