scholarly journals Improving Inductive Link Prediction Using Hyper-relational Facts

2021 ◽  
pp. 74-92
Author(s):  
Mehdi Ali ◽  
Max Berrendorf ◽  
Mikhail Galkin ◽  
Veronika Thost ◽  
Tengfei Ma ◽  
...  
2021 ◽  
pp. 383-398
Author(s):  
Shuo Yang ◽  
Binbin Hu ◽  
Zhiqiang Zhang ◽  
Wang Sun ◽  
Yang Wang ◽  
...  

Author(s):  
Yu Hao ◽  
Xin Cao ◽  
Yixiang Fang ◽  
Xike Xie ◽  
Sibo Wang

Predicting the link between two nodes is a fundamental problem for graph data analytics. In attributed graphs, both the structure and attribute information can be utilized for link prediction. Most existing studies focus on transductive link prediction where both nodes are already in the graph. However, many real-world applications require inductive prediction for new nodes having only attribute information. It is more challenging since the new nodes do not have structure information and cannot be seen during the model training. To solve this problem, we propose a model called DEAL, which consists of three components: two node embedding encoders and one alignment mechanism. The two encoders aim to output the attribute-oriented node embedding and the structure-oriented node embedding, and the alignment mechanism aligns the two types of embeddings to build the connections between the attributes and links. Our model DEAL is versatile in the sense that it works for both inductive and transductive link prediction. Extensive experiments on several benchmark datasets show that our proposed model significantly outperforms existing inductive link prediction methods, and also outperforms the state-of-the-art methods on transductive link prediction.


2019 ◽  
Vol 534 ◽  
pp. 122346 ◽  
Author(s):  
Mei Wu ◽  
Shunyao Wu ◽  
Qi Zhang ◽  
Chuanyu Xue ◽  
Hongsheng Kan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qing Yao ◽  
Bingsheng Chen ◽  
Tim S. Evans ◽  
Kim Christensen

AbstractWe study the evolution of networks through ‘triplets’—three-node graphlets. We develop a method to compute a transition matrix to describe the evolution of triplets in temporal networks. To identify the importance of higher-order interactions in the evolution of networks, we compare both artificial and real-world data to a model based on pairwise interactions only. The significant differences between the computed matrix and the calculated matrix from the fitted parameters demonstrate that non-pairwise interactions exist for various real-world systems in space and time, such as our data sets. Furthermore, this also reveals that different patterns of higher-order interaction are involved in different real-world situations. To test our approach, we then use these transition matrices as the basis of a link prediction algorithm. We investigate our algorithm’s performance on four temporal networks, comparing our approach against ten other link prediction methods. Our results show that higher-order interactions in both space and time play a crucial role in the evolution of networks as we find our method, along with two other methods based on non-local interactions, give the best overall performance. The results also confirm the concept that the higher-order interaction patterns, i.e., triplet dynamics, can help us understand and predict the evolution of different real-world systems.


2021 ◽  
Vol 25 (3) ◽  
pp. 711-738
Author(s):  
Phu Pham ◽  
Phuc Do

Link prediction on heterogeneous information network (HIN) is considered as a challenge problem due to the complexity and diversity in types of nodes and links. Currently, there are remained challenges of meta-path-based link prediction in HIN. Previous works of link prediction in HIN via network embedding approach are mainly focused on exploiting features of node rather than existing relations in forms of meta-paths between nodes. In fact, predicting the existence of new links between non-linked nodes is absolutely inconvincible. Moreover, recent HIN-based embedding models also lack of thorough evaluations on the topic similarity between text-based nodes along given meta-paths. To tackle these challenges, in this paper, we proposed a novel approach of topic-driven multiple meta-path-based HIN representation learning framework, namely W-MMP2Vec. Our model leverages the quality of node representations by combining multiple meta-paths as well as calculating the topic similarity weight for each meta-path during the processes of network embedding learning in content-based HINs. To validate our approach, we apply W-TMP2Vec model in solving several link prediction tasks in both content-based and non-content-based HINs (DBLP, IMDB and BlogCatalog). The experimental outputs demonstrate the effectiveness of proposed model which outperforms recent state-of-the-art HIN representation learning models.


Sign in / Sign up

Export Citation Format

Share Document