State of the Art: Engineered Cementitious Composites Precast Ultra-Thin Whitetopping (ECC-PUTW)

Author(s):  
Ali Aryo Bawono
Author(s):  
Shuaiyu Wang ◽  
Hongxiu Du ◽  
Jingjing Lv ◽  
Jun Guo ◽  
Guoyang Yue ◽  
...  

2021 ◽  
Vol 143 ◽  
pp. 106388
Author(s):  
Kequan Yu ◽  
Wes McGee ◽  
Tsz Yan Ng ◽  
He Zhu ◽  
Victor C. Li

2019 ◽  
Vol 9 (17) ◽  
pp. 3577 ◽  
Author(s):  
Yanjing Zhao ◽  
Jiwang Jiang ◽  
Fujian Ni ◽  
Lan Zhou

In order to investigate the fatigue cracking resistance of engineered cementitious composites (ECC) used in in total life pavement, the semi-circular bending (SCB) test and improved three-point bending fatigue test (ITBF) were utilized in this study. The digital image correlation (DIC) method was also utilized to track the surface strain fields of specimens during the SCB test. X-ray computed tomography (CT) and digital image processing (DIP) technologies were applied to measure the internal-crack distribution of the ITBF specimen. The results of the SCB test showed that the fatigue cracking damage process of ECC can be divided into three stages and that the cracking stable propagating stages occupied the main part, which indicates that ECC has excellent ductility and toughness and could work very well with existing cracks. The ITBF results showed that the fatigue cracking resistance of ECC was better than epoxy asphalt concrete (EAC). In addition, the internal-crack distribution along the depth direction of the ITBF specimen could be presented well by the image pixel statistical (IPS) method based on CT scanning of image slices. It could be found that multiple cracks propagate simultaneously in ECC, instead of a single crack, under the OSBD pavement working condition.


Sign in / Sign up

Export Citation Format

Share Document