scb test
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 18)

H-INDEX

7
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7839
Author(s):  
Muhammad Aakif Ishaq ◽  
Filippo Giustozzi

Accurate characterisation and appropriate binder selection are essential to increase the load-induced cracking resistance of asphalt mixtures at an intermediate temperature. Hence, the primary goal of this study was to correlate the cracking resistance exerted by the binder with the cracking performance of asphalt mixtures. The laboratory-based experimental plan covered various types of laboratory tests specified by various agencies and road authorities to study the correlation of a neat bitumen and five polymer-modified binders with their corresponding asphalt mixtures. The fatigue life of the binders was assessed through a Linear Amplitude Sweep (LAS) test and statistically correlated with various load-induced cracking parameters from the indirect tensile test, semi-circular bending (SCB) test, and four points bending beam test (FPBB) of asphalt mixtures at 25 °C. Binders and mixes were further grouped depending on their polymeric family (i.e., modified with a particular type of polymer) to validate their statistical correlation. The indicator that mostly correlated the binder properties with the asphalt mixture properties is the secant modulus from the SCB test. Fatigue parameters obtained through LAS better explain the asphalt fatigue performance obtained through FPBB; specifically, asphalt tests at high strain levels (e.g., 400 micro strain) better correlate to the LAS fatigue parameter (Nf).


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hua Tan ◽  
Zijia Xiong ◽  
Minghui Gong ◽  
Jie Chen ◽  
Jinxiang Hong

Semiflexible pavement (SFP) is constructed by pouring grouting material into porous asphalt (PA) mixture. SFP has been widely used to address the rutting distress issues across China in recent years. However, studies on its cracking resistance are limited and the failure mechanism of the SFP mixture has not been fully explored nor understood in a comprehensive way. Moreover, the influences of the curing time on the cracking property of the SFP mixture are still not clear. To this end, the strength development and shrinkage properties of grouting materials are determined by utilizing the three-point beam bending test and the shrinkage test. The semicircular bending (SCB) test and the scanning electron microscope-energy-dispersive spectrum (SEM-EDS) are conducted in this study to investigate the cracking resistance and failure mechanism of SFP mixtures with different curing days. Results show that both the strength and shrinkage of grouting materials would develop as the curing time was extended from 0 days to 14 days. SCB test results show that SFP mixtures have higher tensile strength but a lower flexibility index (FI) than PA mixture. It is found that the cracking resistance of SFP mixture is influenced by both the grouting materials’ strength and shrinkage. SEM-EDS analysis demonstrates that the cement-asphalt interface is a stress concentration site and therefore is the weak zone where cracks would initially develop. The microcracks found in the interface zone with different curing days may contribute to the decline of the SFP mixture’s anticracking ability. This study sheds light on the further application of SFP in practical projects.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 811
Author(s):  
Pavla Vacková ◽  
Jan Valentin ◽  
Majda Belhaj

The paper presents the influence of laboratory aging simulation on fracture properties determined on 150 variants of asphalt mixtures. The fracture properties were determined by two different test approaches—semi-circular bending test (SCB test) and three-point bending test on beam specimens (3-PB test). The aging was simulated according to one of the methods defined in EN 12697-52 (storage of test specimens in chamber at temperature of 85 °C for 5 days). The evaluated group of variants covered asphalt mixtures for all road layers. The group was further divided according to used bituminous binder (unmodified vs. modified) and reclaimed asphalt content. The results showed that strength parameters (flexural strength and fracture toughness) increase with aging. It further shows that fracture work provides more complex information about the cracking behavior. For the aging indexes, it was found that for mixtures with modified binders and mixtures which did not contain reclaimed asphalt (RA), the values were higher. The aging indexes for fracture work showed different results for both performed tests.


2020 ◽  
Vol 235 ◽  
pp. 107127 ◽  
Author(s):  
Fang Yuan ◽  
Long Cheng ◽  
Xinxing Shao ◽  
Zhiqiang Dong ◽  
Lei Zhang ◽  
...  

Author(s):  
Veena Venudharan ◽  
Krishna Prapoorna Biligiri

The objective of this study was to qualitatively measure the cracking mechanism of asphalt-rubber gap-graded (AR-Gap) mixtures and compare the methodical approach proposed in this research with the conventional fatigue process. As part of experimentation plan, dynamic a semi-circular bending (SCB) test was conducted on 27 AR-Gap mixtures with varying mix parameters, including, binder type, binder content, and aggregate gradation. Fatigue life ( Nf) obtained from the dynamic SCB test was analyzed from a statistical viewpoint, and key relationships that potentially contribute to fatigue performance were identified. Later, crack mouth opening displacement (CMOD) was used to study the cracking mechanism of AR-Gap mixtures. CMOD data were analyzed using the Francken model that theorizes the accumulated damage as a three-stage failure. Further, fatigue tertiary life ( Nft) was determined on the premise of structural deterioration obtained from the three-stage failure process. The fatigue disparity factor (ξ), the ratio of Nf to Nft for each asphalt mix was estimated to compare fatigue performance indices. The score of ξ for all the mixtures exceeded 50%, which was indicative of longer crack initiation and crack propagation phase over the third stage of the fatigue cracking mechanism. Overall, the fatigue mechanism was explained through the conceptualization of the three-stage fatigue process through various intrinsic properties of AR-Gap mixtures.


Sign in / Sign up

Export Citation Format

Share Document