Assessment of bond-slip behavior of hybrid fiber reinforced engineered cementitious composites (ECC) and deformed rebar via AE monitoring

2021 ◽  
Vol 118 ◽  
pp. 103961
Author(s):  
Wenchen Shan ◽  
Jiepeng Liu ◽  
Yao Ding ◽  
Weihao Mao ◽  
Yubo Jiao
2012 ◽  
Vol 602-604 ◽  
pp. 1010-1013
Author(s):  
Yun Cheol Choi

The purpose of this study is to investigate the bond characteristics between ECC(Engineered Cementitious Composites) and GFRP(Glass Fiber Reinforced Polymers) rebars. An experimental study was carried out to investigate the bond-slip properties of the steel and GFRP rebars in ECC which was reinforced with Polyvinyl Alcohol(PVA) fibers. A total of 8 beam specimens, which was designed according to the RILEM guidelines, was tested according to the RILEM guideline. The main objective was evaluating the load versus displacement and load versus slip behavior and the bond strength regarding the influence of the following parameters : concrete type(Normal concrete and fiber reinforced concrete) and bar diameter and type. From the test results, concrete and ECC specimen presented similar behavior for steel reinforced specimen. However, GFRPO reinforced specimen show different behavior with that. Comparative study for test and equations of MC90 was carried out and code provision predicted the bond characteristics conservatively.


2014 ◽  
Vol 629-630 ◽  
pp. 79-84 ◽  
Author(s):  
Hui Xian Yang ◽  
Jing Li ◽  
Yan Sheng Huang

The dynamic material properties of high performance hybrid fiber reinforced cementitious composites (HFRCC) with various volumetric fractions of steel and polyvinyl alcohol (PVA) fibers were studied by the Split Hopkinson Press Bar (SHPB) test. The results show that HFRCC with higher volumetric fraction of steel fibers are more sensitive to stain rate and the dynamic compressive strength increase more prominently with the strain rate increasing, but peak strain shows the opposite trend. The PVA fibers increase the ductility of HFRCC more effectively than steel fibers. Compared to PVA fiber reinforced cementitious composites (FRCC), HFRCC present better dynamic material properties under impact loading.


Sign in / Sign up

Export Citation Format

Share Document