Research on Defect Classification and Analysis of Spacecraft Ground Software

Author(s):  
Weixiang Zhang ◽  
Rui Dong ◽  
Sihong Wang ◽  
Qianran Si
2021 ◽  
Vol 175 ◽  
pp. 114753
Author(s):  
Angel Gaspar Gonzalez-Rodriguez ◽  
Antonio Gonzalez-Rodriguez ◽  
Fernando Jose Castillo-Garcia

Author(s):  
David Blondheim

AbstractMachine learning (ML) is unlocking patterns and insight into data to provide financial value and knowledge for organizations. Use of machine learning in manufacturing environments is increasing, yet sometimes these applications fail to produce meaningful results. A critical review of how defects are classified is needed to appropriately apply machine learning in a production foundry and other manufacturing processes. Four elements associated with defect classification are proposed: Binary Acceptance Specifications, Stochastic Formation of Defects, Secondary Process Variation, and Visual Defect Inspection. These four elements create data space overlap, which influences the bias associated with training supervised machine learning algorithms. If this influence is significant enough, the predicted error of the model exceeds a critical error threshold (CET). There is no financial motivation to implement the ML model in the manufacturing environment if its error is greater than the CET. The goal is to bring awareness to these four elements, define the critical error threshold, and offer guidance and future study recommendations on data collection and machine learning that will increase the success of ML within manufacturing.


Author(s):  
Pan Tian ◽  
Chen Li ◽  
Hao Fu ◽  
Xueru Yu ◽  
Zhengying Wei ◽  
...  

Author(s):  
Xi Liu ◽  
Yongfeng Yin ◽  
Haifeng Li ◽  
Jiabin Chen ◽  
Chang Liu ◽  
...  

AbstractExisting software intelligent defect classification approaches do not consider radar characters and prior statistics information. Thus, when applying these appaoraches into radar software testing and validation, the precision rate and recall rate of defect classification are poor and have effect on the reuse effectiveness of software defects. To solve this problem, a new intelligent defect classification approach based on the latent Dirichlet allocation (LDA) topic model is proposed for radar software in this paper. The proposed approach includes the defect text segmentation algorithm based on the dictionary of radar domain, the modified LDA model combining radar software requirement, and the top acquisition and classification approach of radar software defect based on the modified LDA model. The proposed approach is applied on the typical radar software defects to validate the effectiveness and applicability. The application results illustrate that the prediction precison rate and recall rate of the poposed approach are improved up to 15 ~ 20% compared with the other defect classification approaches. Thus, the proposed approach can be applied in the segmentation and classification of radar software defects effectively to improve the identifying adequacy of the defects in radar software.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 639
Author(s):  
Chen Ma ◽  
Haifei Dang ◽  
Jun Du ◽  
Pengfei He ◽  
Minbo Jiang ◽  
...  

This paper proposes a novel metal additive manufacturing process, which is a composition of gas tungsten arc (GTA) and droplet deposition manufacturing (DDM). Due to complex physical metallurgical processes involved, such as droplet impact, spreading, surface pre-melting, etc., defects, including lack of fusion, overflow and discontinuity of deposited layers always occur. To assure the quality of GTA-assisted DDM-ed parts, online monitoring based on visual sensing has been implemented. The current study also focuses on automated defect classification to avoid low efficiency and bias of manual recognition by the way of convolutional neural network-support vector machine (CNN-SVM). The best accuracy of 98.9%, with an execution time of about 12 milliseconds to handle an image, proved our model can be enough to use in real-time feedback control of the process.


Sign in / Sign up

Export Citation Format

Share Document