Normal Image Generation-Based Defect Detection by Generative Adversarial Network with Chaotic Random Images

Author(s):  
Hiroki Kobayashi ◽  
Ryo Miyoshi ◽  
Manabu Hashimoto
2021 ◽  
Vol 11 (4) ◽  
pp. 1380
Author(s):  
Yingbo Zhou ◽  
Pengcheng Zhao ◽  
Weiqin Tong ◽  
Yongxin Zhu

While Generative Adversarial Networks (GANs) have shown promising performance in image generation, they suffer from numerous issues such as mode collapse and training instability. To stabilize GAN training and improve image synthesis quality with diversity, we propose a simple yet effective approach as Contrastive Distance Learning GAN (CDL-GAN) in this paper. Specifically, we add Consistent Contrastive Distance (CoCD) and Characteristic Contrastive Distance (ChCD) into a principled framework to improve GAN performance. The CoCD explicitly maximizes the ratio of the distance between generated images and the increment between noise vectors to strengthen image feature learning for the generator. The ChCD measures the sampling distance of the encoded images in Euler space to boost feature representations for the discriminator. We model the framework by employing Siamese Network as a module into GANs without any modification on the backbone. Both qualitative and quantitative experiments conducted on three public datasets demonstrate the effectiveness of our method.


2021 ◽  
Author(s):  
Jialu Huang ◽  
Ying Huang ◽  
Yan-ting Lin ◽  
Zi-yang Liu ◽  
Yang Lin ◽  
...  

2019 ◽  
Vol 90 (3-4) ◽  
pp. 247-270 ◽  
Author(s):  
Guanghua Hu ◽  
Junfeng Huang ◽  
Qinghui Wang ◽  
Jingrong Li ◽  
Zhijia Xu ◽  
...  

Detecting and locating surface defects in textured materials is a crucial but challenging problem due to factors such as texture variations and lack of adequate defective samples prior to testing. In this paper we present a novel unsupervised method for automatically detecting defects in fabrics based on a deep convolutional generative adversarial network (DCGAN). The proposed method extends the standard DCGAN, which consists of a discriminator and a generator, by introducing a new encoder component. With the assistance of this encoder, our model can reconstruct a given query image such that no defects but only normal textures will be preserved in the reconstruction. Therefore, when subtracting the reconstruction from the original image, a residual map can be created to highlight potential defective regions. Besides, our model generates a likelihood map for the image under inspection where each pixel value indicates the probability of occurrence of defects at that location. The residual map and the likelihood map are then synthesized together to form an enhanced fusion map. Typically, the fusion map exhibits uniform gray levels over defect-free regions but distinct deviations over defective areas, which can be further thresholded to produce a binarized segmentation result. Our model can be unsupervisedly trained by feeding with a set of small-sized image patches picked from a few defect-free examples. The training is divided into several successively performed stages, each under an individual training strategy. The performance of the proposed method has been extensively evaluated by a variety of real fabric samples. The experimental results in comparison with other methods demonstrate its effectiveness in fabric defect detection.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1810
Author(s):  
Dat Tien Nguyen ◽  
Tuyen Danh Pham ◽  
Ganbayar Batchuluun ◽  
Kyoung Jun Noh ◽  
Kang Ryoung Park

Although face-based biometric recognition systems have been widely used in many applications, this type of recognition method is still vulnerable to presentation attacks, which use fake samples to deceive the recognition system. To overcome this problem, presentation attack detection (PAD) methods for face recognition systems (face-PAD), which aim to classify real and presentation attack face images before performing a recognition task, have been developed. However, the performance of PAD systems is limited and biased due to the lack of presentation attack images for training PAD systems. In this paper, we propose a method for artificially generating presentation attack face images by learning the characteristics of real and presentation attack images using a few captured images. As a result, our proposed method helps save time in collecting presentation attack samples for training PAD systems and possibly enhance the performance of PAD systems. Our study is the first attempt to generate PA face images for PAD system based on CycleGAN network, a deep-learning-based framework for image generation. In addition, we propose a new measurement method to evaluate the quality of generated PA images based on a face-PAD system. Through experiments with two public datasets (CASIA and Replay-mobile), we show that the generated face images can capture the characteristics of presentation attack images, making them usable as captured presentation attack samples for PAD system training.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yi Gu ◽  
Qiankun Zheng

Background. The generation of medical images is to convert the existing medical images into one or more required medical images to reduce the time required for sample diagnosis and the radiation to the human body from multiple medical images taken. Therefore, the research on the generation of medical images has important clinical significance. At present, there are many methods in this field. For example, in the image generation process based on the fuzzy C-means (FCM) clustering method, due to the unique clustering idea of FCM, the images generated by this method are uncertain of the attribution of certain organizations. This will cause the details of the image to be unclear, and the resulting image quality is not high. With the development of the generative adversarial network (GAN) model, many improved methods based on the deep GAN model were born. Pix2Pix is a GAN model based on UNet. The core idea of this method is to use paired two types of medical images for deep neural network fitting, thereby generating high-quality images. The disadvantage is that the requirements for data are very strict, and the two types of medical images must be paired one by one. DualGAN model is a network model based on transfer learning. The model cuts the 3D image into multiple 2D slices, simulates each slice, and merges the generated results. The disadvantage is that every time an image is generated, bar-shaped “shadows” will be generated in the three-dimensional image. Method/Material. To solve the above problems and ensure the quality of image generation, this paper proposes a Dual3D&PatchGAN model based on transfer learning. Since Dual3D&PatchGAN is set based on transfer learning, there is no need for one-to-one paired data sets, only two types of medical image data sets are needed, which has important practical significance for applications. This model can eliminate the bar-shaped “shadows” produced by DualGAN’s generated images and can also perform two-way conversion of the two types of images. Results. From the multiple evaluation indicators of the experimental results, it can be analyzed that Dual3D&PatchGAN is more suitable for the generation of medical images than other models, and its generation effect is better.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4818 ◽  
Author(s):  
Hyun-Koo Kim ◽  
Kook-Yeol Yoo ◽  
Ju H. Park ◽  
Ho-Youl Jung

In this paper, we propose a method of generating a color image from light detection and ranging (LiDAR) 3D reflection intensity. The proposed method is composed of two steps: projection of LiDAR 3D reflection intensity into 2D intensity, and color image generation from the projected intensity by using a fully convolutional network (FCN). The color image should be generated from a very sparse projected intensity image. For this reason, the FCN is designed to have an asymmetric network structure, i.e., the layer depth of the decoder in the FCN is deeper than that of the encoder. The well-known KITTI dataset for various scenarios is used for the proposed FCN training and performance evaluation. Performance of the asymmetric network structures are empirically analyzed for various depth combinations for the encoder and decoder. Through simulations, it is shown that the proposed method generates fairly good visual quality of images while maintaining almost the same color as the ground truth image. Moreover, the proposed FCN has much higher performance than conventional interpolation methods and generative adversarial network based Pix2Pix. One interesting result is that the proposed FCN produces shadow-free and daylight color images. This result is caused by the fact that the LiDAR sensor data is produced by the light reflection and is, therefore, not affected by sunlight and shadow.


Sign in / Sign up

Export Citation Format

Share Document