scholarly journals A Transfer Deep Generative Adversarial Network Model to Synthetic Brain CT Generation from MR Images

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yi Gu ◽  
Qiankun Zheng

Background. The generation of medical images is to convert the existing medical images into one or more required medical images to reduce the time required for sample diagnosis and the radiation to the human body from multiple medical images taken. Therefore, the research on the generation of medical images has important clinical significance. At present, there are many methods in this field. For example, in the image generation process based on the fuzzy C-means (FCM) clustering method, due to the unique clustering idea of FCM, the images generated by this method are uncertain of the attribution of certain organizations. This will cause the details of the image to be unclear, and the resulting image quality is not high. With the development of the generative adversarial network (GAN) model, many improved methods based on the deep GAN model were born. Pix2Pix is a GAN model based on UNet. The core idea of this method is to use paired two types of medical images for deep neural network fitting, thereby generating high-quality images. The disadvantage is that the requirements for data are very strict, and the two types of medical images must be paired one by one. DualGAN model is a network model based on transfer learning. The model cuts the 3D image into multiple 2D slices, simulates each slice, and merges the generated results. The disadvantage is that every time an image is generated, bar-shaped “shadows” will be generated in the three-dimensional image. Method/Material. To solve the above problems and ensure the quality of image generation, this paper proposes a Dual3D&PatchGAN model based on transfer learning. Since Dual3D&PatchGAN is set based on transfer learning, there is no need for one-to-one paired data sets, only two types of medical image data sets are needed, which has important practical significance for applications. This model can eliminate the bar-shaped “shadows” produced by DualGAN’s generated images and can also perform two-way conversion of the two types of images. Results. From the multiple evaluation indicators of the experimental results, it can be analyzed that Dual3D&PatchGAN is more suitable for the generation of medical images than other models, and its generation effect is better.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 944
Author(s):  
Cheng Peng ◽  
Lingling Li ◽  
Qing Chen ◽  
Zhaohui Tang ◽  
Weihua Gui ◽  
...  

Fault diagnosis under the condition of data sets or samples with only a few fault labels has become a hot spot in the field of machinery fault diagnosis. To solve this problem, a fault diagnosis method based on deep transfer learning is proposed. Firstly, the discriminator of the generative adversarial network (GAN) is improved by enhancing its sparsity, and then adopts the adversarial mechanism to continuously optimize the recognition ability of the discriminator; finally, the parameter transfer learning (PTL) method is applied to transfer the trained discriminator to target domain to solve the fault diagnosis problem with only a small number of label samples. Experimental results show that this method has good fault diagnosis performance.


Author(s):  
Zhike Han ◽  
Bin Yang ◽  
Yiren Du ◽  
Xingyu Du ◽  
Hao Xing ◽  
...  

The purpose of this paper is to study the help of generative adversarial networks (GAN) for face generation, and to explore whether the network can have an effect on complex face generation. Training an image translation neural network model based on a generative adversarial network with the help of a large number of real human face data sets. Using the CV2-based face tagging algorithm and the HED-based face edge extraction algorithm to obtain input information, and then based on the translation neural network model Developing a face generation system through Tensorflow, Torch and other frameworks to realize the function of generating real faces through sketches or “changing faces” through existing faces. Finally, this model provides training configuration and training information.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4365
Author(s):  
Kwangyong Jung ◽  
Jae-In Lee ◽  
Nammoon Kim ◽  
Sunjin Oh ◽  
Dong-Wook Seo

Radar target classification is an important task in the missile defense system. State-of-the-art studies using micro-doppler frequency have been conducted to classify the space object targets. However, existing studies rely highly on feature extraction methods. Therefore, the generalization performance of the classifier is limited and there is room for improvement. Recently, to improve the classification performance, the popular approaches are to build a convolutional neural network (CNN) architecture with the help of transfer learning and use the generative adversarial network (GAN) to increase the training datasets. However, these methods still have drawbacks. First, they use only one feature to train the network. Therefore, the existing methods cannot guarantee that the classifier learns more robust target characteristics. Second, it is difficult to obtain large amounts of data that accurately mimic real-world target features by performing data augmentation via GAN instead of simulation. To mitigate the above problem, we propose a transfer learning-based parallel network with the spectrogram and the cadence velocity diagram (CVD) as the inputs. In addition, we obtain an EM simulation-based dataset. The radar-received signal is simulated according to a variety of dynamics using the concept of shooting and bouncing rays with relative aspect angles rather than the scattering center reconstruction method. Our proposed model is evaluated on our generated dataset. The proposed method achieved about 0.01 to 0.39% higher accuracy than the pre-trained networks with a single input feature.


2021 ◽  
Vol 11 (4) ◽  
pp. 1380
Author(s):  
Yingbo Zhou ◽  
Pengcheng Zhao ◽  
Weiqin Tong ◽  
Yongxin Zhu

While Generative Adversarial Networks (GANs) have shown promising performance in image generation, they suffer from numerous issues such as mode collapse and training instability. To stabilize GAN training and improve image synthesis quality with diversity, we propose a simple yet effective approach as Contrastive Distance Learning GAN (CDL-GAN) in this paper. Specifically, we add Consistent Contrastive Distance (CoCD) and Characteristic Contrastive Distance (ChCD) into a principled framework to improve GAN performance. The CoCD explicitly maximizes the ratio of the distance between generated images and the increment between noise vectors to strengthen image feature learning for the generator. The ChCD measures the sampling distance of the encoded images in Euler space to boost feature representations for the discriminator. We model the framework by employing Siamese Network as a module into GANs without any modification on the backbone. Both qualitative and quantitative experiments conducted on three public datasets demonstrate the effectiveness of our method.


2021 ◽  
Author(s):  
Jialu Huang ◽  
Ying Huang ◽  
Yan-ting Lin ◽  
Zi-yang Liu ◽  
Yang Lin ◽  
...  

Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 414 ◽  
Author(s):  
Traian Caramihale ◽  
Dan Popescu ◽  
Loretta Ichim

The detection of human emotions has applicability in various domains such as assisted living, health monitoring, domestic appliance control, crowd behavior tracking real time, and emotional security. The paper proposes a new system for emotion classification based on a generative adversarial network (GAN) classifier. The generative adversarial networks have been widely used for generating realistic images, but the classification capabilities have been vaguely exploited. One of the main advantages is that by using the generator, we can extend our testing dataset and add more variety to each of the seven emotion classes we try to identify. Thus, the novelty of our study consists in increasing the number of classes from N to 2N (in the learning phase) by considering real and fake emotions. Facial key points are obtained from real and generated facial images, and vectors connecting them with the facial center of gravity are used by the discriminator to classify the image as one of the 14 classes of interest (real and fake for seven emotions). As another contribution, real images from different emotional classes are used in the generation process unlike the classical GAN approach which generates images from simple noise arrays. By using the proposed method, our system can classify emotions in facial images regardless of gender, race, ethnicity, age and face rotation. An accuracy of 75.2% was obtained on 7000 real images (14,000, also considering the generated images) from multiple combined facial datasets.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 245
Author(s):  
Konstantinos G. Liakos ◽  
Georgios K. Georgakilas ◽  
Fotis C. Plessas ◽  
Paris Kitsos

A significant problem in the field of hardware security consists of hardware trojan (HT) viruses. The insertion of HTs into a circuit can be applied for each phase of the circuit chain of production. HTs degrade the infected circuit, destroy it or leak encrypted data. Nowadays, efforts are being made to address HTs through machine learning (ML) techniques, mainly for the gate-level netlist (GLN) phase, but there are some restrictions. Specifically, the number and variety of normal and infected circuits that exist through the free public libraries, such as Trust-HUB, are based on the few samples of benchmarks that have been created from circuits large in size. Thus, it is difficult, based on these data, to develop robust ML-based models against HTs. In this paper, we propose a new deep learning (DL) tool named Generative Artificial Intelligence Netlists SynthesIS (GAINESIS). GAINESIS is based on the Wasserstein Conditional Generative Adversarial Network (WCGAN) algorithm and area–power analysis features from the GLN phase and synthesizes new normal and infected circuit samples for this phase. Based on our GAINESIS tool, we synthesized new data sets, different in size, and developed and compared seven ML classifiers. The results demonstrate that our new generated data sets significantly enhance the performance of ML classifiers compared with the initial data set of Trust-HUB.


Sign in / Sign up

Export Citation Format

Share Document