A Short Note on the System-Length Distribution in a Finite-Buffer $$GI^X/C$$-MSP/1/N Queue Using Roots

2021 ◽  
pp. 396-410
Author(s):  
Abhijit Datta Banik ◽  
Mohan L. Chaudhry ◽  
Sabine Wittevrongel ◽  
Herwig Bruneel
2005 ◽  
Vol 42 (01) ◽  
pp. 199-222 ◽  
Author(s):  
Yutaka Sakuma ◽  
Masakiyo Miyazawa

We consider a two-node Jackson network in which the buffer of node 1 is truncated. Our interest is in the limit of the tail decay rate of the queue-length distribution of node 2 when the buffer size of node 1 goes to infinity, provided that the stability condition of the unlimited network is satisfied. We show that there can be three different cases for the limit. This generalizes some recent results obtained for the tandem Jackson network. Special cases and some numerical examples are also presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
P. Vijaya Laxmi ◽  
V. Suchitra

We study a finite buffer N-policy GI/M(n)/1 queue with Bernoulli-schedule vacation interruption. The server works with a slower rate during vacation period. At a service completion epoch during working vacation, if there are at least N customers present in the queue, the server interrupts vacation and otherwise continues the vacation. Using the supplementary variable technique and recursive method, we obtain the steady state system length distributions at prearrival and arbitrary epochs. Some special cases of the model, various performance measures, and cost analysis are discussed. Finally, parameter effect on the performance measures of the model is presented through numerical computations.


2012 ◽  
Vol 26 (2) ◽  
pp. 221-244 ◽  
Author(s):  
M. L. Chaudhry ◽  
S. K. Samanta ◽  
A. Pacheco

In this paper, we present (in terms of roots) a simple closed-form analysis for evaluating system-length distribution at prearrival epochs of the GI/C-MSP/1 queue. The proposed analysis is based on roots of the associated characteristic equation of the vector-generating function of system-length distribution. We also provide the steady-state system-length distribution at an arbitrary epoch by using the classical argument based on Markov renewal theory. The sojourn-time distribution has also been investigated. The prearrival epoch probabilities have been obtained using the method of roots which is an alternative approach to the matrix-geometric method and the spectral method. Numerical aspects have been tested for a variety of arrival- and service-time distributions and a sample of numerical outputs is presented. The proposed method not only gives an alternative solution to the existing methods, but it is also analytically simple, easy to implement, and computationally efficient. It is hoped that the results obtained will prove beneficial to both theoreticians and practitioners.


2004 ◽  
Vol 41 (02) ◽  
pp. 557-569 ◽  
Author(s):  
Nail Akar ◽  
Khosrow Sohraby

In this paper, we study Markov fluid queues where the net fluid rate to a single-buffer system varies with respect to the state of an underlying continuous-time Markov chain. We present a novel algorithmic approach to solve numerically for the steady-state solution of such queues. Using this approach, both infinite- and finite-buffer cases are studied. We show that the solution of the infinite-buffer case is reduced to the solution of a generalized spectral divide-and-conquer (SDC) problem applied on a certain matrix pencil. Moreover, this SDC problem does not require the individual computation of any eigenvalues and eigenvectors. Via the solution for the SDC problem, a matrix-exponential representation for the steady-state queue-length distribution is obtained. The finite-buffer case, on the other hand, requires a similar but different decomposition, the so-called additive decomposition (AD). Using the AD, we obtain a modified matrix-exponential representation for the steady-state queue-length distribution. The proposed approach for the finite-buffer case is shown not to have the numerical stability problems reported in the literature.


2014 ◽  
Vol 31 (01) ◽  
pp. 1450003 ◽  
Author(s):  
SHAN GAO ◽  
ZAIMING LIU ◽  
QIWEN DU

In this paper, we study a discrete-time finite buffer batch arrival queue with multiple geometric working vacations and vacation interruption: the server serves the customers at the lower rate rather than completely stopping during the vacation period and can come back to the normal working level once there are customers after a service completion during the vacation period, i.e., a vacation interruption happens. The service times during a service period, service times during a vacation period and vacation times are geometrically distributed. The queue is analyzed using the supplementary variable and the imbedded Markov-chain techniques. We obtain steady-state system length distributions at pre-arrival, arbitrary and outside observer's observation epochs. We also present probability generation function (p.g.f.) of actual waiting-time distribution in the system and some performance measures.


1989 ◽  
Vol 26 (02) ◽  
pp. 372-380
Author(s):  
Nico M. Van Dijk

Queueing systems are studied with a last-come, first-served queueing discipline and batch arrivals generated by a finite number of non-exponential sources. A closed-form expression is derived for the steady-state queue length distribution. This expression has a scaled geometric form and is insensitive to the input distribution. Moreover, an algorithm for the recursive computation of the normalizing constant and the busy source distribution is presented. The results are of both practical and theoretical interest as an extension of the standard Poisson batch input case.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
P. Vijaya Laxmi ◽  
V. Goswami ◽  
K. Jyothsna

This paper analyzes a finite buffer multiple working vacations queue with balking, reneging, and vacation interruption underN-policy. In the working vacation, a customer is served at a lower rate and at the instants of a service completion; if there are at leastNcustomers in the queue, the vacation is interrupted and the server switches to regular busy period otherwise continues the vacation. Using Markov process and recursive technique, we derive the stationary system length distributions at arbitrary epoch. Various performance measures and some special models of the system are presented. Cost analysis is carried out using particle swarm optimization and quadratic fit search method. Finally, some numerical results showing the effect of model parameters on key performance measures of the system are presented.


2005 ◽  
Vol 42 (1) ◽  
pp. 199-222 ◽  
Author(s):  
Yutaka Sakuma ◽  
Masakiyo Miyazawa

We consider a two-node Jackson network in which the buffer of node 1 is truncated. Our interest is in the limit of the tail decay rate of the queue-length distribution of node 2 when the buffer size of node 1 goes to infinity, provided that the stability condition of the unlimited network is satisfied. We show that there can be three different cases for the limit. This generalizes some recent results obtained for the tandem Jackson network. Special cases and some numerical examples are also presented.


Sign in / Sign up

Export Citation Format

Share Document