2019 ◽  
Vol 8 (2) ◽  
pp. 4800-4807

Recently, engineers are concentrating on designing an effective prediction model for finding the rate of student admission in order to raise the educational growth of the nation. The method to predict the student admission towards the higher education is a challenging task for any educational organization. There is a high visibility of crisis towards admission in the higher education. The admission rate of the student is the major risk to the educational society in the world. The student admission greatly affects the economic, social, academic, profit and cultural growth of the nation. The student admission rate also depends on the admission procedures and policies of the educational institutions. The chance of student admission also depends on the feedback given by all the stake holders of the educational sectors. The forecasting of the student admission is a major task for any educational institution to protect the profit and wealth of the organization. This paper attempts to analyze the performance of the student admission prediction by using machine learning dimensionality reduction algorithms. The Admission Predict dataset from Kaggle machine learning Repository is used for prediction analysis and the features are reduced by feature reduction methods. The prediction of the chance of Admit is achieved in four ways. Firstly, the correlation between each of the dataset attributes are found and depicted as a histogram. Secondly, the top most high correlated features are identified which are directly contributing to the prediction of chance of admit. Thirdly, the Admission Predict dataset is subjected to dimensionality reduction methods like principal component analysis (PCA), Sparse PCA, Incremental PCA , Kernel PCA and Mini Batch Sparse PCA. Fourth, the optimized dimensionality reduced dataset is then executed to analyze and compare the mean squared error, Mean Absolute Error and R2 Score of each method. The implementation is done by python in Anaconda Spyder Navigator Integrated Development Environment. Experimental Result shows that the CGPA, GRE Score and TOEFL Score are highly correlated features in predicting the chance of admit. The execution of performance analysis shows that Incremental PCA have achieved the effective prediction of chance of admit with minimum MSE of 0.09, MAE of 0.24 and reasonable R2 Score of 0.26.


Author(s):  
Htay Htay Win ◽  
Aye Thida Myint ◽  
Mi Cho Cho

For years, achievements and discoveries made by researcher are made aware through research papers published in appropriate journals or conferences. Many a time, established s researcher and mainly new user are caught up in the predicament of choosing an appropriate conference to get their work all the time. Every scienti?c conference and journal is inclined towards a particular ?eld of research and there is a extensive group of them for any particular ?eld. Choosing an appropriate venue is needed as it helps in reaching out to the right listener and also to further one’s chance of getting their paper published. In this work, we address the problem of recommending appropriate conferences to the authors to increase their chances of receipt. We present three di?erent approaches for the same involving the use of social network of the authors and the content of the paper in the settings of dimensionality reduction and topic modelling. In all these approaches, we apply Correspondence Analysis (CA) to obtain appropriate relationships between the entities in question, such as conferences and papers. Our models show hopeful results when compared with existing methods such as content-based ?ltering, collaborative ?ltering and hybrid ?ltering.


2013 ◽  
Vol 38 (4) ◽  
pp. 465-470 ◽  
Author(s):  
Jingjie Yan ◽  
Xiaolan Wang ◽  
Weiyi Gu ◽  
LiLi Ma

Abstract Speech emotion recognition is deemed to be a meaningful and intractable issue among a number of do- mains comprising sentiment analysis, computer science, pedagogy, and so on. In this study, we investigate speech emotion recognition based on sparse partial least squares regression (SPLSR) approach in depth. We make use of the sparse partial least squares regression method to implement the feature selection and dimensionality reduction on the whole acquired speech emotion features. By the means of exploiting the SPLSR method, the component parts of those redundant and meaningless speech emotion features are lessened to zero while those serviceable and informative speech emotion features are maintained and selected to the following classification step. A number of tests on Berlin database reveal that the recogni- tion rate of the SPLSR method can reach up to 79.23% and is superior to other compared dimensionality reduction methods.


2009 ◽  
Vol 19 (11) ◽  
pp. 2908-2920
Author(s):  
De-Yu MENG ◽  
Nan-Nan GU ◽  
Zong-Ben XU ◽  
Yee LEUNG

2018 ◽  
Vol 64 (1) ◽  
pp. 95-101
Author(s):  
Nazira Aldasheva ◽  
Vyacheslav Kipen ◽  
Zhaynagul Isakova ◽  
Sergey Melnov ◽  
Raisa Smolyakova ◽  
...  

Basing on Multifactor Dimensionality Reduction method we showed that polymorphic variants p.Q399R (rs25487, XRCC1) and p.P72R (rs1042522, TP53) correlated with increased risk of breast cancer for women from the Kyrgyz Republic and the Republic of Belarus. Cohort for investigation included patients with clinically verified breast cancer: 117 women from the Kyrgyz Republic (nationality - Kyrgyz) and 169 - of the Republic of Belarus (nationality - Belarusians). Group for comparison included (healthy patients without history of cancer pathology at the time of blood sampling) 102 patients from the Kyrgyz Republic, 185 - from the Republic of Belarus. Respectively genotyping of polymorphic variants p.Q399R (rs25487, XRCC1) and p.P72R (rs1042522, TP53) was done by PCR-RFLP. Analysis of the intergenic interactions conducted with MDR 3.0.2 software. Both ethnic groups showed an increase of breast cancer risk in the presence of alleles for SNPs Gln p.Q399R (XRCC1) in the heterozygous state: for the group “Kyrgyz” - OR=2,78 (95% CI=[1,60-4,82]), p=0,001; for the group “Belarusians” - OR=1,85 (95% СІ=[1Д1-2,82], p=0,004. Carriers with combination of alleles Gln (p.Q399R, XRCC1) and Pro (p.P72R, TP53) showed statistically significance increases of breast cancer risk as for patients from the Kyrgyz Republic (OR=2,89, 95% CI=[1,33-6,31]), so as for patients from the Republic of Belarus (OR=3,01, 95% CI=[0,79-11,56]).


Sign in / Sign up

Export Citation Format

Share Document