Automatic Diagnosis of Breast Cancer from Histopathological Images Using Deep Learning Technique

Author(s):  
Elbetel Taye Zewde ◽  
Gizeaddis Lamesgin Simegn
2021 ◽  
Vol 7 ◽  
pp. e493
Author(s):  
Omneya Attallah ◽  
Fatma Anwar ◽  
Nagia M. Ghanem ◽  
Mohamed A. Ismail

Breast cancer (BC) is one of the most common types of cancer that affects females worldwide. It may lead to irreversible complications and even death due to late diagnosis and treatment. The pathological analysis is considered the gold standard for BC detection, but it is a challenging task. Automatic diagnosis of BC could reduce death rates, by creating a computer aided diagnosis (CADx) system capable of accurately identifying BC at an early stage and decreasing the time consumed by pathologists during examinations. This paper proposes a novel CADx system named Histo-CADx for the automatic diagnosis of BC. Most related studies were based on individual deep learning methods. Also, studies did not examine the influence of fusing features from multiple CNNs and handcrafted features. In addition, related studies did not investigate the best combination of fused features that influence the performance of the CADx. Therefore, Histo-CADx is based on two stages of fusion. The first fusion stage involves the investigation of the impact of fusing several deep learning (DL) techniques with handcrafted feature extraction methods using the auto-encoder DL method. This stage also examines and searches for a suitable set of fused features that could improve the performance of Histo-CADx. The second fusion stage constructs a multiple classifier system (MCS) for fusing outputs from three classifiers, to further improve the accuracy of the proposed Histo-CADx. The performance of Histo-CADx is evaluated using two public datasets; specifically, the BreakHis and the ICIAR 2018 datasets. The results from the analysis of both datasets verified that the two fusion stages of Histo-CADx successfully improved the accuracy of the CADx compared to CADx constructed with individual features. Furthermore, using the auto-encoder for the fusion process has reduced the computation cost of the system. Moreover, the results after the two fusion stages confirmed that Histo-CADx is reliable and has the capacity of classifying BC more accurately compared to other latest studies. Consequently, it can be used by pathologists to help them in the accurate diagnosis of BC. In addition, it can decrease the time and effort needed by medical experts during the examination.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhongyi Han ◽  
Benzheng Wei ◽  
Yuanjie Zheng ◽  
Yilong Yin ◽  
Kejian Li ◽  
...  

2020 ◽  
Vol 375 ◽  
pp. 9-24 ◽  
Author(s):  
Yassir Benhammou ◽  
Boujemâa Achchab ◽  
Francisco Herrera ◽  
Siham Tabik

2018 ◽  
Vol 79 (21-22) ◽  
pp. 14509-14528 ◽  
Author(s):  
Lingqiao Li ◽  
Xipeng Pan ◽  
Huihua Yang ◽  
Zhenbing Liu ◽  
Yubei He ◽  
...  

2020 ◽  
pp. 1-16
Author(s):  
Deepika Kumar ◽  
Usha Batra

Breast cancer positions as the most well-known threat and the main source of malignant growth-related morbidity and mortality throughout the world. It is apical of all new cancer incidences analyzed among females. However, Machine learning algorithms have given rise to progress across different domains. There are various diagnostic methods available for cancer detection. However, cancer detection through histopathological images is considered to be more accurate. In this research, we have proposed the Stacked Generalized Ensemble (SGE) approach for breast cancer classification into Invasive Ductal Carcinoma+ and Invasive Ductal Carcinoma-. SGE is inspired by the stacking model which utilizes output predictions. Here, SGE uses six deep learning models as level-0 learner models or sub-models and Logistic regression is used as Level – 1 learner or meta – learner model. Invasive Ductal Carcinoma dataset for histopathology images is used for experimentation. The results of the proposed methodology have been compared and analyzed with existing machine learning and deep learning methods. The results demonstrate that the proposed methodology performed exponentially good in image classification in terms of accuracy, precision, recall, and F1 measure.


Author(s):  
Karthika Gidijala ◽  
◽  
Mansa Devi Pappu ◽  
Manasa Vavilapalli ◽  
Mahesh Kothuru ◽  
...  

Many different models of Convolution Neural Networks exist in the Deep Learning studies. The application and prudence of the algorithms is known only when they are implemented with strong datasets. The histopathological images of breast cancer are considered as to have much number of haphazard structures and textures. Dealing with such images is a challenging issue in deep learning. Working on wet labs and in coherence to the results many research have blogged with novel annotations in the research. In this paper, we are presenting a model that can work efficiently on the raw images with different resolutions and alleviating with the problems of the presence of the structures and textures. The proposed model achieves considerably good results useful for decision making in cancer diagnosis.


Sign in / Sign up

Export Citation Format

Share Document