Thickness Effect on the Dynamic Behavior of Three-Dimensional Plates by using the Ritz Method

Author(s):  
Erasmo Viola ◽  
Cristina Gentilini
2005 ◽  
Vol 72 (5) ◽  
pp. 797-800 ◽  
Author(s):  
Jae-Hoon Kang ◽  
Arthur W. Leissa

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution in which the bottom edges are normal to the midsurface of the shells based upon the circular cylindrical coordinate system using the Ritz method. Comparisons are made between the frequencies and the corresponding mode shapes of the conical shells from the authors' former analysis with bottom edges parallel to the axial direction and the present analysis with the edges normal to shell midsurfaces.


2013 ◽  
Vol 80 (2) ◽  
Author(s):  
D. Zhou ◽  
S. H. Lo

The three-dimensional (3D) free vibration of twisted cylinders with sectorial cross section or a radial crack through the height of the cylinder is studied by means of the Chebyshev–Ritz method. The analysis is based on the three-dimensional small strain linear elasticity theory. A simple coordinate transformation is applied to map the twisted cylindrical domain into a normal cylindrical domain. The product of a triplicate Chebyshev polynomial series along with properly defined boundary functions is selected as the admissible functions. An eigenvalue matrix equation can be conveniently derived through a minimization process by the Rayleigh–Ritz method. The boundary functions are devised in such a way that the geometric boundary conditions of the cylinder are automatically satisfied. The excellent property of Chebyshev polynomial series ensures robustness and rapid convergence of the numerical computations. The present study provides a full vibration spectrum for thick twisted cylinders with sectorial cross section, which could not be determined by 1D or 2D models. Highly accurate results presented for the first time are systematically produced, which can serve as a benchmark to calibrate other numerical solutions for twisted cylinders with sectorial cross section. The effects of height-to-radius ratio and twist angle on frequency parameters of cylinders with different subtended angles in the sectorial cross section are discussed in detail.


2019 ◽  
Vol 134 ◽  
pp. 189-202 ◽  
Author(s):  
C.S. Huang ◽  
H.T. Lee ◽  
P.Y. Li ◽  
K.C. Hu ◽  
C.W. Lan ◽  
...  

SIMULATION ◽  
2021 ◽  
pp. 003754972110437
Author(s):  
Mariana Ribeiro Pereira ◽  
Fábio Lúcio Santos ◽  
Nara Silveira Velloso ◽  
Flora Maria de Melo Villar ◽  
Mateus Resende Rodrigues

The macaw palm ( Acrocomia aculeata) is a palm tree native to tropical forests that stand out due to its great potential for oil production. This study was developed with the objective of constructing a high-fidelity model of the macaw palm fruit-rachilla system for the purpose of simulating its dynamic behavior when subjected to mechanical vibrations. The finite element method was used to determine the natural frequencies and modes of vibration of the system. The three-dimensional models of the fruit-rachilla systems were elaborated using CAD3D Fusion 360 software. The modal properties of the fruit-rachilla systems were obtained based on the models developed by varying the elasticity modulus values of the system. The parameters of greatest influence in the estimation of natural frequencies are the elasticity modulus, especially that of the fruit-rachilla joint, and the specific mass. The models that take into account the three-dimensional strains along the rachilla are the least sensitive to variations in the mechanical properties (elasticity modulus and specific mass) and are shown to be more representative of the actual physical system.


Author(s):  
Akemi Nishida

It is becoming important to carry out detailed modeling procedures and analyses to better understand the actual phenomena. Because some accidents caused by high-frequency vibrations of piping have been recently reported, the clarification of the dynamic behavior of the piping structure during operation is imperative in order to avoid such accidents. The aim of our research is to develop detailed analysis tools and to determine the dynamic behavior of piping systems in nuclear power plants, which are complicated assemblages of different parts. In this study, a three-dimensional dynamic frame analysis tool for wave propagation analysis is developed by using the spectral element method (SEM) based on the Timoshenko beam theory. Further, a multi-connected structure is analyzed and compared with the experimental results. Consequently, the applicability of the SEM is shown.


Sign in / Sign up

Export Citation Format

Share Document