Compaction, Permeability and Flow Simulation for Liquid Composite Moulding of Natural Fibre Composites

Author(s):  
Darshil U. Shah ◽  
Mike J. Clifford
Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4811
Author(s):  
Delphin Pantaloni ◽  
Alain Bourmaud ◽  
Christophe Baley ◽  
Mike J. Clifford ◽  
Michael H. Ramage ◽  
...  

Liquid composite moulding (LCM) of plant fibre composites has gained much attention for the development of structural biobased composites. To produce quality composites, better understanding of the resin impregnation process and flow behaviour in plant fibre reinforcements is vital. By reviewing the literature, we aim to identify key plant fibre reinforcement-specific factors that influence, if not govern, the mould filling stage during LCM of plant fibre composites. In particular, the differences in structure (physical and biochemical) for plant and synthetic fibres, their semi-products (i.e., yarns and rovings), and their mats and textiles are shown to have a perceptible effect on their compaction, in-plane permeability, and processing via LCM. In addition to examining the effects of dual-scale flow, resin absorption, (subsequent) fibre swelling, capillarity, and time-dependent saturated and unsaturated permeability that are specific to plant fibre reinforcements, we also review the various models utilised to predict and simulate resin impregnation during LCM of plant fibre composites.


2015 ◽  
Vol 1105 ◽  
pp. 51-55 ◽  
Author(s):  
K.M. Gupta ◽  
Kishor Kalauni

Bhimal fibres are quite a newer kind of bio-degradable fibres. They have never been heard before in literatures from the view point of their utility as engineering material. These fibres have been utilized for investigation of their properties. Characterization of this fibre is essential to determine its properties for further use as reinforcing fibre in polymeric, bio-degradable and other kinds of matrix. With this objective, the fabrication method and other mechanical properties of Bhimal-reinforced-PVA biocomposite have been discussed. The stress-strain curves and load-deflection characteristics are obtained. The tensile, compressive, flexure and impact strengths have been calculated. The results are shown in tables and graphs. The results obtained are compared with other existing natural fibre biocomposites. From the observations, it has been concluded that the tensile strength of Bhimal-reinforced-PVA biocomposite is higher than other natural fibre composites. Hence these can be used as reinforcement to produce much lighter weight biocomposites.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
H. F. M. de Queiroz ◽  
M. D. Banea ◽  
D. K. K. Cavalcanti

AbstractNatural fibre-reinforced composites have attracted a great deal of attention by the automotive industry mainly due to their sustainable characteristics and low cost. The use of sustainable composites is expected to continuously increase in this area as the cost and weight of vehicles could be partially reduced by replacing glass fibre composites and aluminium with natural fibre composites. Adhesive bonding is the preferred joining method for composites and is increasingly used in the automotive industry. However, the literature on natural fibre reinforced polymer composite adhesive joints is scarce and needs further investigation. The main objective of this study was to investigate experimentally adhesively bonded joints made of natural, synthetic and interlaminar hybrid fibre-reinforced polymer composites. The effect of the number of the interlaminar synthetic layers required in order to match the bonded joint efficiency of a fully synthetic GFRP bonded joint was studied. It was found that the failure load of the hybrid jute/glass adherend joints increased by increasing the number of external synthetic layers (i.e. the failure load of hybrid 3-layer joint increased by 28.6% compared to hybrid 2-layer joint) and reached the pure synthetic adherends joints efficiency due to the optimum compromise between the adherend material property (i.e. stiffness and strength) and a diminished bondline peel stress state.


Author(s):  
Sandra Maria Da Luz ◽  
Vitor Magalini Zago De Sousa

2020 ◽  
pp. 117-124
Author(s):  
G. Mohamed Zakriya ◽  
G. Ramakrishnan

Sign in / Sign up

Export Citation Format

Share Document