Physically Based Rainfall Thresholds for Shallow Landslide Initiation at Regional Scales

Author(s):  
Diana Salciarini ◽  
Claudio Tamagnini
2021 ◽  
Author(s):  
Matteo Berti ◽  
Alessandro Simoni

<p>Rainfall is the most significant factor for debris flows triggering. Water is needed to saturate the soil, initiate the sediment motion (regardless of the mobilization mechanism) and transform the solid debris into a fluid mass that can move rapidly downslope. This water is commonly provided by rainfall or rainfall and snowmelt. Consequently, most warning systems rely on the use of rainfall thresholds to predict debris flow occurrence. Debris flows thresholds are usually empirically-derived from the rainfall records that caused past debris flows in a certain area, using a combination of selected precipitation measurements (such as event rainfall P, duration D, or average intensity I) that describe critical rainfall conditions. Recent years have also seen a growing interest in the use of coupled hydrological and slope stability models to derive physically-based thresholds for shallow landslide initiation.</p><p>In both cases, rainfall thresholds are affected by significant uncertainty. Sources of uncertainty include: measurement errors; spatial variability of the rainfall field; incomplete or uncertain debris flow inventory; subjective definition of the “rainfall event”; use of subjective criteria to define the critical conditions; uncertainty in model parameters (for physically-based approaches). Rainfall measurement is widely recognized as a main source of uncertainty due to the extreme time-space variability that characterize intense rainfall events in mountain areas. However, significant errors can also arise by inaccurate information reported in landslide inventories on the timing of debris flows, or by the criterion used to define triggering intensities.</p><p>This study analyzes the common sources of uncertainty associated to rainfall thresholds for debris flow occurrence and discusses different methods to quantify them. First, we give an overview of the various approaches used in the literature to measure the uncertainty caused by random errors or procedural defects. These approaches are then applied to debris flows using real data collected in the Dolomites (Northen Alps, Itay), in order to estimate the variabilty of each single factor (precipitation, triggering timing, triggering intensity..). Individual uncertainties are then combined to obtain the overall uncertain of the rainfall threshold, which can be calculated using the classical method of “summation in quadrature” or a more effective approach based on Monte Carlo simulations. The uncertainty budget allows to identify the biggest contributors to the final variability and it is also useful to understand if this variability can be reduced to make our thresholds more precise.</p><p> </p>


2018 ◽  
Vol 9 (1) ◽  
pp. 295-324 ◽  
Author(s):  
Luca Schilirò ◽  
Andrea Cevasco ◽  
Carlo Esposito ◽  
Gabriele Scarascia Mugnozza

Author(s):  
Maurizio Lazzari ◽  
Marco Piccarreta ◽  
Ram L. Ray ◽  
Salvatore Manfreda

Rainfall-triggered shallow landslide events have caused losses of human lives and millions of euros in damage to property in all parts of the world. The need to prevent such hazards combined with the difficulty of describing the geomorphological processes over regional scales led to the adoption of empirical rainfall thresholds derived from records of rainfall events triggering landslides. These rainfall intensity thresholds are generally computed, assuming that all events are not influenced by antecedent soil moisture conditions. Nevertheless, it is expected that antecedent soil moisture conditions may provide critical support for the correct definition of the triggering conditions. Therefore, we explored the role of antecedent soil moisture on critical rainfall intensity-duration thresholds to evaluate the possibility of modifying or improving traditional approaches. The study was carried out using 326 landslide events that occurred in the last 18 years in the Basilicata region (southern Italy). Besides the ordinary data (i.e., rainstorm intensity and duration), we also derived the antecedent soil moisture conditions using a parsimonious hydrological model. These data have been used to derive the rainfall intensity thresholds conditional on the antecedent saturation of soil quantifying the impact of such parameters on rainfall thresholds.


Landslides ◽  
2017 ◽  
Vol 15 (5) ◽  
pp. 937-952 ◽  
Author(s):  
Yuri Galanti ◽  
Michele Barsanti ◽  
Andrea Cevasco ◽  
Giacomo D’Amato Avanzi ◽  
Roberto Giannecchini

2013 ◽  
Vol 13 (3) ◽  
pp. 559-573 ◽  
Author(s):  
D. Zizioli ◽  
C. Meisina ◽  
R. Valentino ◽  
L. Montrasio

Abstract. On the 27 and 28 April 2009, the area of Oltrepo Pavese in northern Italy was affected by a very intense rainfall event that caused a great number of shallow landslides. These instabilities occurred on slopes covered by vineyards or recently formed woodlands and caused damage to many roads and one human loss. Based on aerial photographs taken immediately after the event and field surveys, more than 1600 landslides were detected. After acquiring topographical data, geotechnical properties of the soils and land use, susceptibility analysis on a territorial scale was carried out. In particular, different physically based models were applied to two contiguous sites with the same geological context but different typologies and sizes of shallow landslides. This paper presents the comparison between the ex-post results obtained from the different approaches. On the basis of the observed landslide localizations, the accuracy of the different models was evaluated, and the significant results are highlighted.


2014 ◽  
Vol 14 (2) ◽  
pp. 317-330 ◽  
Author(s):  
C. Vennari ◽  
S. L. Gariano ◽  
L. Antronico ◽  
M. T. Brunetti ◽  
G. Iovine ◽  
...  

Abstract. In many areas, rainfall is the primary trigger of landslides. Determining the rainfall conditions responsible for landslide occurrence is important, and may contribute to saving lives and properties. In a long-term national project for the definition of rainfall thresholds for possible landslide occurrence in Italy, we compiled a catalogue of 186 rainfall events that resulted in 251 shallow landslides in Calabria, southern Italy, from January 1996 to September 2011. Landslides were located geographically using Google Earth®, and were given a mapping and a temporal accuracy. We used the landslide information, and sub-hourly rainfall measurements obtained from two complementary networks of rain gauges, to determine cumulated event vs. rainfall duration (ED) thresholds for Calabria. For this purpose, we adopted an existing method used to prepare rainfall thresholds and to estimate their associated uncertainties in central Italy. The regional thresholds for Calabria were found to be nearly identical to previous ED thresholds for Calabria obtained using a reduced set of landslide information, and slightly higher than the ED thresholds obtained for central Italy. We segmented the regional catalogue of rainfall events with landslides in Calabria into lithology, soil regions, rainfall zones, and seasonal periods. The number of events in each subdivision was insufficient to determine reliable thresholds, but allowed for preliminary conclusions about the role of the environmental factors in the rainfall conditions responsible for shallow landslides in Calabria. We further segmented the regional catalogue based on administrative subdivisions used for hydro-meteorological monitoring and operational flood forecasting, and we determined separate ED thresholds for the Tyrrhenian and the Ionian coasts of Calabria. We expect the ED rainfall thresholds for Calabria to be used in regional and national landslide warning systems. The thresholds can also be used for landslide hazard and risk assessments, and for erosion and landscape evolution studies, in the study area and in similar physiographic regions in the Mediterranean area.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
L. Schilirò ◽  
G. Poueme Djueyep ◽  
C. Esposito ◽  
G. Scarascia Mugnozza

In the last years, the shallow landslide phenomenon has increasingly been investigated through physically based models, which try to extend over large-area simplified slope stability analyses using physical and mechanical parameters of the involved material. However, the parameterization of such models is usually challenging even at the slope scale, due to the numerous parameters involved in the failure mechanism. In particular, considering the scale of the phenomenon, the role of transient hydrology is essential. For this reason, in this work we present the outcome of different experimental tests conducted on a soil slope model with a sloping flume. The tested material was sampled on Monte Mario Hill (Rome, Central Italy), an area which has been frequently affected by rainfall-induced landslide events in the past. In this respect, we also performed a physically based numerical analysis at the field conditions, in order to evaluate the response of the terrain to a recent extreme rainfall event. The results of the flume tests show that, for the same material, two different triggering mechanisms (i.e., uprise of a temporary water table and advance of the wetting front) occur by varying the initial water content only. At the same time, the results of the numerical simulations indicate that clayey sand and lean clay are the soil types mostly influenced by the abovementioned rainfall event, since the initial moisture conditions enhance the formation of a wide wetting front within the soil profile.


2020 ◽  
Author(s):  
Enrico D'Addario ◽  
Leonardo Disperati ◽  
José Luís Zêzere ◽  
Raquel De Melo ◽  
Sérgio Oliveira

<p>Shallow landslide susceptibility modelling at regional scale may be performed using both a physically based and statistical approach. For the same area, these two approaches can have inconsistent results, mainly because the two methods are conceptually different. Physically based models are based on the infinite slope model and consists on the computation cell by cell of a safety factor comparing between driving and resisting forces. The assumption that landslides occur in slopes that are characterized by predisposing factors similar to those in which landslides have occurred in the past, is the concept behind the statistical models. The aim of this work is to compare the two approach and investigate the differences between the two models. The study area is located in northern Tuscany, central Italy, in which an extensive field survey highlighted that about 60% of landslides involve bedrock. For this reason, we developed a physically based susceptibility analysis taking into account both the surficial layer (slope deposit, SD) and the underlying layer (BR), characterized by weathered and fractured bedrock. This model is compared to the statistically based one, which take into account topographic and geologic predisposing factor as well as bedrock geo-mechanical properties, such Geological Strength Index (GSI), Schmidt hammer rebound values (Rv) and Joint density (Jv). The accuracy of the models is evaluated using a multi-temporal landslide inventory, in which involving bedrock landslides are distinct from slope deposits landslides. Within this general framework results are discussed regarding the model’s predictive capacity and spatial agreement.</p>


Sign in / Sign up

Export Citation Format

Share Document