Location-Dependent Dendritic Computation in a Modeled Striatal Projection Neuron

Author(s):  
Youwei Zheng ◽  
Lars Schwabe ◽  
Joshua L. Plotkin
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Atefeh Pooryasin ◽  
Marta Maglione ◽  
Marco Schubert ◽  
Tanja Matkovic-Rachid ◽  
Sayed-mohammad Hasheminasab ◽  
...  

AbstractThe physical distance between presynaptic Ca2+ channels and the Ca2+ sensors triggering the release of neurotransmitter-containing vesicles regulates short-term plasticity (STP). While STP is highly diversified across synapse types, the computational and behavioral relevance of this diversity remains unclear. In the Drosophila brain, at nanoscale level, we can distinguish distinct coupling distances between Ca2+ channels and the (m)unc13 family priming factors, Unc13A and Unc13B. Importantly, coupling distance defines release components with distinct STP characteristics. Here, we show that while Unc13A and Unc13B both contribute to synaptic signalling, they play distinct roles in neural decoding of olfactory information at excitatory projection neuron (ePN) output synapses. Unc13A clusters closer to Ca2+ channels than Unc13B, specifically promoting fast phasic signal transfer. Reduction of Unc13A in ePNs attenuates responses to both aversive and appetitive stimuli, while reduction of Unc13B provokes a general shift towards appetitive values. Collectively, we provide direct genetic evidence that release components of distinct nanoscopic coupling distances differentially control STP to play distinct roles in neural decoding of sensory information.


2021 ◽  
Vol 11 (10) ◽  
pp. 1674-1680
Author(s):  
Yuan Yao ◽  
Jun Yuan ◽  
Yanju Ma ◽  
Runxiu Zhu ◽  
Yong Ma

Hyperuricemia is closely related to acute ischemic stroke (AIS). In our study, we investigated the pattern of miRNA-155-5p and miRNA-124-5p expressions along with its clinical application in AIS and hyperuricemia patients and in a hyperuricemia rat model by RT-qPCR. The hyperuricemia rat model was established, and we found that the levels of miRNA-155-5p and miRNA-124-5p were increased in the serum, brain and kidney tissues compared with those in the normal rats. We proved that the levels of miRNA-155-5p and miRNA-124-5p were also elevated in AIS, hyperuricemia and AIS accompanied with hyperuricemia patients enrolled from the department of neurology in Inner Mongolia People’s Hospital (IMPH). The miRNA-155-5p and miRNA-124-5p were mainly associated with neuronal apoptosis, cerebral vasospasm, neuron projection, neuron projection morphogenesis, neuron differentiation and exocytosis. The above results might provide clues for the study the pathogenesis of AIS and hyperuricemia.


2009 ◽  
Vol 101 (2) ◽  
pp. 591-602 ◽  
Author(s):  
Hiraku Mochida ◽  
Gilles Fortin ◽  
Jean Champagnat ◽  
Joel C. Glover

To better characterize the emergence of spontaneous neuronal activity in the developing hindbrain, spontaneous activity was recorded optically from defined projection neuron populations in isolated preparations of the brain stem of the chicken embryo. Ipsilaterally projecting reticulospinal (RS) neurons and several groups of vestibuloocular (VO) neurons were labeled retrogradely with Calcium Green-1 dextran amine and spontaneous calcium transients were recorded using a charge-coupled-device camera mounted on a fluorescence microscope. Simultaneous extracellular recordings were made from one of the trigeminal motor nerves (nV) to register the occurrence of spontaneous synchronous bursts of activity. Two types of spontaneous activity were observed: synchronous events (SEs), which occurred in register with spontaneous bursts in nV once every few minutes and were tetrodotoxin (TTX) dependent, and asynchronous events (AEs), which occurred in the intervals between SEs and were TTX resistant. AEs occurred developmentally before SEs and were in general smaller and more variable in amplitude than SEs. SEs appeared at the same stage as nV bursts early on embryonic day 4, first in RS neurons and then in VO neurons. All RS neurons participated equally in SEs from the outset, whereas different subpopulations of VO neurons participated differentially, both in terms of the proportion of neurons that exhibited SEs, the fidelity with which the SEs in individual neurons followed the nV bursts, and the developmental stage at which SEs appeared and matured. The results show that spontaneous activity is expressed heterogeneously among hindbrain projection neuron populations, suggesting its differential involvement in the formation of different functional neuronal circuits.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ryan J Kast ◽  
Alexandra L Lanjewar ◽  
Colton D Smith ◽  
Pat Levitt

The expression patterns of the transcription factor FOXP2 in the developing mammalian forebrain have been described, and some studies have tested the role of this protein in the development and function of specific forebrain circuits by diverse methods and in multiple species. Clinically, mutations in FOXP2 are associated with severe developmental speech disturbances, and molecular studies indicate that impairment of Foxp2 may lead to dysregulation of genes involved in forebrain histogenesis. Here, anatomical and molecular phenotypes of the cortical neuron populations that express FOXP2 were characterized in mice. Additionally, Foxp2 was removed from the developing mouse cortex at different prenatal ages using two Cre-recombinase driver lines. Detailed molecular and circuit analyses were undertaken to identify potential disruptions of development. Surprisingly, the results demonstrate that Foxp2 function is not required for many functions that it has been proposed to regulate, and therefore plays a more limited role in cortical development than previously thought.


2010 ◽  
Vol 93 (2) ◽  
pp. 151-169 ◽  
Author(s):  
Giulio Srubek Tomassy ◽  
Simona Lodato ◽  
Zachary Trayes-Gibson ◽  
Paola Arlotta

Neuron ◽  
2011 ◽  
Vol 69 (4) ◽  
pp. 763-779 ◽  
Author(s):  
Simona Lodato ◽  
Caroline Rouaux ◽  
Kathleen B. Quast ◽  
Chanati Jantrachotechatchawan ◽  
Michèle Studer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document