Distributed Cooperation of Multiple UAVs for Area Monitoring Missions

Author(s):  
José J. Acevedo ◽  
Begoña C. Arrue ◽  
Iván Maza ◽  
Anibal Ollero
2021 ◽  
Author(s):  
Chris Moneyron ◽  
Moe Sakamoto ◽  
Mo Rastgaar ◽  
Nina Mahmoudian
Keyword(s):  

ROBOT ◽  
2010 ◽  
Vol 32 (4) ◽  
pp. 505-509 ◽  
Author(s):  
Ye HONG ◽  
Cunxiao MIAO ◽  
Xusheng LEI

Author(s):  
A. Agarwal ◽  
Lim Meng Hiot ◽  
Nguyen Trung Nghia ◽  
Er Meng Joo

2021 ◽  
Vol 11 (7) ◽  
pp. 3103
Author(s):  
Kyuman Lee ◽  
Daegyun Choi ◽  
Donghoon Kim

Collision avoidance (CA) using the artificial potential field (APF) usually faces several known issues such as local minima and dynamically infeasible problems, so unmanned aerial vehicles’ (UAVs) paths planned based on the APF are safe only in a certain environment. This research proposes a CA approach that combines the APF and motion primitives (MPs) to tackle the known problems associated with the APF. Since MPs solve for a locally optimal trajectory with respect to allocated time, the trajectory obtained by the MPs is verified as dynamically feasible. When a collision checker based on the k-d tree search algorithm detects collision risk on extracted sample points from the planned trajectory, generating re-planned path candidates to avoid obstacles is performed. After rejecting unsafe route candidates, one applies the APF to select the best route among the remaining safe-path candidates. To validate the proposed approach, we simulated two meaningful scenario cases—the presence of static obstacles situation with local minima and dynamic environments with multiple UAVs present. The simulation results show that the proposed approach provides smooth, efficient, and dynamically feasible pathing compared to the APF.


2021 ◽  
pp. 1-1
Author(s):  
Camilla Tabasso ◽  
Nicola Mimmo ◽  
Venanzio Cichella ◽  
Lorenzo Marconi

2021 ◽  
pp. 1-12
Author(s):  
Omid Izadi Ghafarokhi ◽  
Mazda Moattari ◽  
Ahmad Forouzantabar

With the development of the wide-area monitoring system (WAMS), power system operators are capable of providing an accurate and fast estimation of time-varying load parameters. This study proposes a spatial-temporal deep network-based new attention concept to capture the dynamic and static patterns of electrical load consumption through modeling complicated and non-stationary interdependencies between time sequences. The designed deep attention-based network benefits from long short-term memory (LSTM) based component to learning temporal features in time and frequency-domains as encoder-decoder based recurrent neural network. Furthermore, to inherently learn spatial features, a convolutional neural network (CNN) based attention mechanism is developed. Besides, this paper develops a loss function based on a pseudo-Huber concept to enhance the robustness of the proposed network in noisy conditions as well as improve the training performance. The simulation results on IEEE 68-bus demonstrates the effectiveness and superiority of the proposed network through comparison with several previously presented and state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document