On the Transition from Regular to Mach Reflection in Overexpanded Planar Jets

Author(s):  
E. Shimshi ◽  
G. Ben-Dor ◽  
A. Levy
Keyword(s):  
Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 314
Author(s):  
Tianyu Jing ◽  
Huilan Ren ◽  
Jian Li

The present study investigates the similarity problem associated with the onset of the Mach reflection of Zel’dovich–von Neumann–Döring (ZND) detonations in the near field. The results reveal that the self-similarity in the frozen-limit regime is strictly valid only within a small scale, i.e., of the order of the induction length. The Mach reflection becomes non-self-similar during the transition of the Mach stem from “frozen” to “reactive” by coupling with the reaction zone. The triple-point trajectory first rises from the self-similar result due to compressive waves generated by the “hot spot”, and then decays after establishment of the reactive Mach stem. It is also found, by removing the restriction, that the frozen limit can be extended to a much larger distance than expected. The obtained results elucidate the physical origin of the onset of Mach reflection with chemical reactions, which has previously been observed in both experiments and numerical simulations.


AIAA Journal ◽  
1996 ◽  
Vol 34 (10) ◽  
pp. 2196-2198 ◽  
Author(s):  
A. Chpoun ◽  
D. Passerel ◽  
G. Ben-Dor
Keyword(s):  

2003 ◽  
Vol 479 ◽  
pp. 259-286 ◽  
Author(s):  
L. F. HENDERSON ◽  
E. I. VASILEV ◽  
G. BEN-DOR ◽  
T. ELPERIN

2014 ◽  
Vol 8 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Bulat Pavel Viktorovich ◽  
Uskov Vladimir Nikolaevich

2008 ◽  
Vol 599 ◽  
pp. 81-110 ◽  
Author(s):  
C. J. WANG ◽  
S. L. XU ◽  
C. M. GUO

Gaseous detonation propagation in a bifurcated tube was experimentally and numerically studied for stoichiometric hydrogen and oxygen mixtures diluted with argon. Pressure detection, smoked foil recording and schlieren visualization were used in the experiments. Numerical simulation was carried out at low initial pressure (8.00kPa), based on the reactive Navier–Stokes equations in conjunction with a detailed chemical reaction model. The results show that the detonation wave is strongly disturbed by the wall geometry of the bifurcated tube and undergoes a successive process of attenuation, failure, re-initiation and the transition from regular reflection to Mach reflection. Detonation failure is attributed to the rarefaction waves from the left-hand corner by decoupling leading shock and reaction zones. Re-initiation is induced by the inert leading shock reflection on the right-hand wall in the vertical branch. The branched wall geometry has only a local effect on the detonation propagation. In the horizontal branch, the disturbed detonation wave recovers to a self-sustaining one earlier than that in the vertical branch. A critical case was found in the experiments where the disturbed detonation wave can be recovered to be self-sustaining downstream of the horizontal branch, but fails in the vertical branch, as the initial pressure drops to 2.00kPa. Numerical simulation also shows that complex vortex structures can be observed during detonation diffraction. The reflected shock breaks the vortices into pieces and its interaction with the unreacted recirculation region induces an embedded jet. In the vertical branch, owing to the strength difference at any point and the effect of chemical reactions, the Mach stem cannot be approximated as an arc. This is different from the case in non-reactive steady flow. Generally, numerical simulation qualitatively reproduces detonation attenuation, failure, re-initiation and the transition from regular reflection to Mach reflection observed in experiments.


1976 ◽  
Vol 1 (15) ◽  
pp. 45 ◽  
Author(s):  
Udo Berger ◽  
Soren Kohlhase

As under oblique wave approach water waves are reflected by a vertical wall, a wave branching effect (stem) develops normal to the reflecting wall. The waves progressing along the wall will steep up. The wave heights increase up to more than twice the incident wave height. The £jtudy has pointed out that this effect, which is usually called MACH-REFLECTION, is not to be taken as an analogy to gas dynamics, but should be interpreted as a diffraction problem.


Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 305
Author(s):  
Mikhail V. Chernyshov ◽  
Karina E. Savelova ◽  
Anna S. Kapralova

In this study, we obtain the comparative analysis of methods of quick approximate analytical prediction of Mach shock height in planar steady supersonic flows (for example, in supersonic jet flow and in narrowing channel between two wedges), that are developed since the 1980s and being actively modernized now. A new analytical model based on flow averaging downstream curved Mach shock is proposed, which seems more accurate than preceding models, comparing with numerical and experimental data.


1985 ◽  
Vol 152 ◽  
pp. 49-66 ◽  
Author(s):  
J. M. Dewey ◽  
D. J. McMillin

Shock fronts and fluid-particle trajectories throughout a two-dimensional shock wave flow have been measured by multiple schlieren photography in a detailed study of the Mach reflection from a 10° wedge of plane uniform shocks with Mach numbers of 1.105, 1.240 and 1.415. Correction of optical distortions throughout the field of view permitted the positions and shapes of the shock fronts and the magnitudes and directions of the particle velocities to be measured with a high degree of accuracy. No departure from self-similarity of the flow fields could be detected. The cross-sections of the reflected shocks were found to be circular and centred on a point which moved with the velocity of the flow behind the incident shock. The triple-point trajectories were linear. The velocity of the curved Mach stem shock was found to be constant at any one height above the wedge surface and to decrease monotonically with height. A deviation from perpendicularity was noticed where the Mach stems met the surface of the wedge, the shocks having a slight forward inclination of as much as 1°. The experimental results cannot be completely explained using the classical three-shock theory and an alternative model for weak Mach reflection is developed in Part 2 of this paper.


Sign in / Sign up

Export Citation Format

Share Document