scholarly journals Nonlinear Klein-Gordon-Maxwell systems with Neumann boundary conditions on a Riemannian manifold with boundary

Author(s):  
Marco Ghimenti ◽  
Anna Maria Micheletti
2017 ◽  
Vol 8 (1) ◽  
pp. 559-582 ◽  
Author(s):  
Mónica Clapp ◽  
Marco Ghimenti ◽  
Anna Maria Micheletti

Abstract We study the semiclassical limit to a singularly perturbed nonlinear Klein–Gordon–Maxwell–Proca system, with Neumann boundary conditions, on a Riemannian manifold {\mathfrak{M}} with boundary. We exhibit examples of manifolds, of arbitrary dimension, on which these systems have a solution which concentrates at a closed submanifold of the boundary of {\mathfrak{M}} , forming a positive layer, as the singular perturbation parameter goes to zero. Our results allow supercritical nonlinearities and apply, in particular, to bounded domains in {\mathbb{R}^{N}} . Similar results are obtained for the more classical electrostatic Klein–Gordon–Maxwell system with appropriate boundary conditions.


2018 ◽  
Vol 18 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Monica Lazzo ◽  
Lorenzo Pisani

AbstractWe study a Klein–Gordon–Maxwell system in a bounded spatial domain under Neumann boundary conditions on the electric potential. We allow a nonconstant coupling coefficient. For sufficiently small data, we find infinitely many static solutions.


2020 ◽  
Vol 18 (1) ◽  
pp. 1552-1564
Author(s):  
Huimin Tian ◽  
Lingling Zhang

Abstract In this paper, the blow-up analyses in nonlocal reaction diffusion equations with time-dependent coefficients are investigated under Neumann boundary conditions. By constructing some suitable auxiliary functions and using differential inequality techniques, we show some sufficient conditions to ensure that the solution u ( x , t ) u(x,t) blows up at a finite time under appropriate measure sense. Furthermore, an upper and a lower bound on blow-up time are derived under some appropriate assumptions. At last, two examples are presented to illustrate the application of our main results.


2020 ◽  
Vol 28 (2) ◽  
pp. 237-241
Author(s):  
Biljana M. Vojvodic ◽  
Vladimir M. Vladicic

AbstractThis paper deals with non-self-adjoint differential operators with two constant delays generated by {-y^{\prime\prime}+q_{1}(x)y(x-\tau_{1})+(-1)^{i}q_{2}(x)y(x-\tau_{2})}, where {\frac{\pi}{3}\leq\tau_{2}<\frac{\pi}{2}<2\tau_{2}\leq\tau_{1}<\pi} and potentials {q_{j}} are real-valued functions, {q_{j}\in L^{2}[0,\pi]}. We will prove that the delays and the potentials are uniquely determined from the spectra of four boundary value problems: two of them under boundary conditions {y(0)=y(\pi)=0} and the remaining two under boundary conditions {y(0)=y^{\prime}(\pi)=0}.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 469 ◽  
Author(s):  
Azhar Iqbal ◽  
Nur Nadiah Abd Hamid ◽  
Ahmad Izani Md. Ismail

This paper is concerned with the numerical solution of the nonlinear Schrödinger (NLS) equation with Neumann boundary conditions by quintic B-spline Galerkin finite element method as the shape and weight functions over the finite domain. The Galerkin B-spline method is more efficient and simpler than the general Galerkin finite element method. For the Galerkin B-spline method, the Crank Nicolson and finite difference schemes are applied for nodal parameters and for time integration. Two numerical problems are discussed to demonstrate the accuracy and feasibility of the proposed method. The error norms L 2 , L ∞ and conservation laws I 1 ,   I 2 are calculated to check the accuracy and feasibility of the method. The results of the scheme are compared with previously obtained approximate solutions and are found to be in good agreement.


2018 ◽  
Vol 145 ◽  
pp. 01009 ◽  
Author(s):  
Vassil M. Vassilev ◽  
Daniel M. Dantchev ◽  
Peter A. Djondjorov

In this article we consider a critical thermodynamic system with the shape of a thin film confined between two parallel planes. It is assumed that the state of the system at a given temperature and external ordering field is described by order-parameter profiles, which minimize the one-dimensional counterpart of the standard ϕ4 Ginzburg–Landau Hamiltonian and meet the so-called Neumann – Neumann boundary conditions. We give analytic representation of the extremals of this variational problem in terms ofWeierstrass elliptic functions. Then, depending on the temperature and ordering field we determine the minimizers and obtain the phase diagram in the temperature-field plane.


Sign in / Sign up

Export Citation Format

Share Document