scholarly journals Exploring the Resilience of Some Lightweight Ciphers Against Profiled Single Trace Attacks

Author(s):  
Valentina Banciu ◽  
Elisabeth Oswald ◽  
Carolyn Whitnall
Keyword(s):  
2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Soumangsu Chakraborty ◽  
Akikazu Hashimoto

Abstract We derive the geodesic equation for determining the Ryu-Takayanagi surface in AdS3 deformed by single trace $$ \mu T\overline{T} $$ μT T ¯ + $$ {\varepsilon}_{+}J\overline{T} $$ ε + J T ¯ + $$ {\varepsilon}_{-}T\overline{J} $$ ε − T J ¯ deformation for generic values of (μ, ε+, ε−) for which the background is free of singularities. For generic values of ε±, Lorentz invariance is broken, and the Ryu-Takayanagi surface embeds non-trivially in time as well as spatial coordinates. We solve the geodesic equation and characterize the UV and IR behavior of the entanglement entropy and the Casini-Huerta c-function. We comment on various features of these observables in the (μ, ε+, ε−) parameter space. We discuss the matching at leading order in small (μ, ε+, ε−) expansion of the entanglement entropy between the single trace deformed holographic system and a class of double trace deformed theories where a strictly field theoretic analysis is possible. We also comment on expectation value of a large rectangular Wilson loop-like observable.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jeremias Aguilera-Damia ◽  
Louise M. Anderson ◽  
Evan Coleman

Abstract A solvable current-current deformation of the worldsheet theory of strings on AdS3 has been recently conjectured to be dual to an irrelevant deformation of the spacetime orbifold CFT, commonly referred to as single-trace $$ T\overline{T} $$ T T ¯ . These deformations give rise to a family of bulk geometries which realize a non-trivial flow towards the UV. For a particular sign of this deformation, the corresponding three-dimensional geometry approaches AdS3 in the interior, but has a curvature singularity at finite radius, beyond which there are closed timelike curves. It has been suggested that this singularity is due to the presence of “negative branes,” which are exotic objects that generically change the metric signature. We propose an alternative UV-completion for geometries displaying a similar singular behavior by cutting and gluing to a regular background which approaches a linear dilaton vacuum in the UV. In the S-dual picture, a singularity resolution mechanism known as the enhançon induces this transition by the formation of a shell of D5-branes at a fixed radial position near the singularity. The solutions involving negative branes gain a new interpretation in this context.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Alexandre Belin ◽  
Benjamin Withers

Abstract A common method to prepare states in AdS/CFT is to perform the Euclidean path integral with sources turned on for single-trace operators. These states can be interpreted as coherent states of the bulk quantum theory associated to Lorentzian initial data on a Cauchy slice. In this paper, we discuss the extent to which arbitrary initial data can be obtained in this way. We show that the initial data must be analytic and define the subset of it that can be prepared by imposing bulk regularity. Turning this around, we show that for generic analytic initial data the corresponding Euclidean section contains singularities coming from delta function sources in the bulk. We propose an interpretation of these singularities as non-perturbative objects in the microscopic theory.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Bartomeu Fiol ◽  
Alan Rios Fukelman

Abstract We derive the planar limit of 2- and 3-point functions of single-trace chiral primary operators of $$ \mathcal{N} $$ N = 2 SQCD on S4, to all orders in the ’t Hooft coupling. In order to do so, we first obtain a combinatorial expression for the planar free energy of a hermitian matrix model with an infinite number of arbitrary single and double trace terms in the potential; this solution might have applications in many other contexts. We then use these results to evaluate the analogous planar correlation functions on ℝ4. Specifically, we compute all the terms with a single value of the ζ function for a few planar 2- and 3-point functions, and conjecture general formulas for these terms for all 2- and 3-point functions on ℝ4.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hongxiang Tian ◽  
Enze Gong ◽  
Chongsi Xie ◽  
Yi-Jian Du

Abstract The recursive expansion of tree level multitrace Einstein-Yang-Mills (EYM) amplitudes induces a refined graphic expansion, by which any tree-level EYM amplitude can be expressed as a summation over all possible refined graphs. Each graph contributes a unique coefficient as well as a proper combination of color-ordered Yang-Mills (YM) amplitudes. This expansion allows one to evaluate EYM amplitudes through YM amplitudes, the latter have much simpler structures in four dimensions than the former. In this paper, we classify the refined graphs for the expansion of EYM amplitudes into N k MHV sectors. Amplitudes in four dimensions, which involve k + 2 negative-helicity particles, at most get non-vanishing contribution from graphs in N k′ (k′ ≤ k) MHV sectors. By the help of this classification, we evaluate the non-vanishing amplitudes with two negative-helicity particles in four dimensions. We establish a correspondence between the refined graphs for single-trace amplitudes with $$ \left({g}_i^{-},{g}_j^{-}\right) $$ g i − g j − or $$ \left({h}_i^{-},{g}_j^{-}\right) $$ h i − g j − configuration and the spanning forests of the known Hodges determinant form. Inspired by this correspondence, we further propose a symmetric formula of double-trace amplitudes with $$ \left({g}_i^{-},{g}_j^{-}\right) $$ g i − g j − configuration. By analyzing the cancellation between refined graphs in four dimensions, we prove that any other tree amplitude with two negative-helicity particles has to vanish.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
M. Beccaria ◽  
A. Hasan

Abstract We consider U(N) $$ \mathcal{N} $$ N = 4 super Yang-Mills theory and discuss how to extract the strong coupling limit of non-planar corrections to observables involving the $$ \frac{1}{2} $$ 1 2 -BPS Wilson loop. Our approach is based on a suitable saddle point treatment of the Eynard-Orantin topological recursion in the Gaussian matrix model. Working directly at strong coupling we avoid the usual procedure of first computing observables at finite planar coupling λ, order by order in 1/N, and then taking the λ ≫ 1 limit. In the proposed approach, matrix model multi-point resolvents take a simplified form and some structures of the genus expansion, hardly visible at low order, may be identified and rigorously proved. As a sample application, we consider the expectation value of multiple coincident circular supersymmetric Wilson loops as well as their correlator with single trace chiral operators. For these quantities we provide novel results about the structure of their genus expansion at large tension, generalising recent results in arXiv:2011.02885.


2005 ◽  
Vol 2005 (08) ◽  
pp. 014-014 ◽  
Author(s):  
Martin Kruczenski
Keyword(s):  

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
John Joseph M. Carrasco ◽  
Laurentiu Rodina ◽  
Suna Zekioğlu

Abstract Color-kinematics duality in the adjoint has proven key to the relationship between gauge and gravity theory scattering amplitude predictions. In recent work, we demonstrated that at four-point tree-level, a small number of color-dual EFT building blocks could encode all higher-derivative single-trace massless corrections to gauge and gravity theories compatible with adjoint double-copy. One critical aspect was the trivialization of building higher-derivative color-weights — indeed, it is the mixing of kinematics with non-adjoint-type color-weights (like the permutation-invariant d4) which permits description via adjoint double-copy. Here we find that such ideas clarify the predictions of local five-point higher-dimensional operators as well. We demonstrate how a single scalar building block can be combined with color structures to build higher-derivative color factors that generate, through double copy, the amplitudes associated with higher-derivative gauge-theory operators. These may then be suitably mapped, through another double-copy, to higher-derivative corrections in gravity.


Sign in / Sign up

Export Citation Format

Share Document