scholarly journals On topological recursion for Wilson loops in $$ \mathcal{N} $$ = 4 SYM at strong coupling

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
M. Beccaria ◽  
A. Hasan

Abstract We consider U(N) $$ \mathcal{N} $$ N = 4 super Yang-Mills theory and discuss how to extract the strong coupling limit of non-planar corrections to observables involving the $$ \frac{1}{2} $$ 1 2 -BPS Wilson loop. Our approach is based on a suitable saddle point treatment of the Eynard-Orantin topological recursion in the Gaussian matrix model. Working directly at strong coupling we avoid the usual procedure of first computing observables at finite planar coupling λ, order by order in 1/N, and then taking the λ ≫ 1 limit. In the proposed approach, matrix model multi-point resolvents take a simplified form and some structures of the genus expansion, hardly visible at low order, may be identified and rigorously proved. As a sample application, we consider the expectation value of multiple coincident circular supersymmetric Wilson loops as well as their correlator with single trace chiral operators. For these quantities we provide novel results about the structure of their genus expansion at large tension, generalising recent results in arXiv:2011.02885.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Wolfgang Mück

Abstract Supersymmetric circular Wilson loops in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills theory are discussed starting from their Gaussian matrix model representations. Previous results on the generating functions of Wilson loops are reviewed and extended to the more general case of two different loop contours, which is needed to discuss coincident loops with opposite orientations. A combinatorial formula representing the connected correlators of multiply wound Wilson loops in terms of the matrix model solution is derived. Two new results are obtained on the expectation value of the circular Wilson loop, the expansion of which into a series in 1/N and to all orders in the ’t Hooft coupling λ was derived by Drukker and Gross about twenty years ago. The connected correlators of two multiply wound Wilson loops with arbitrary winding numbers are calculated as a series in 1/N. The coefficient functions are derived not only as power series in λ, but also to all orders in λ by expressing them in terms of the coefficients of the Drukker and Gross series. This provides an efficient way to calculate the 1/N series, which can probably be generalized to higher-point correlators.


2010 ◽  
Vol 25 (08) ◽  
pp. 627-639
Author(s):  
ZHIFENG XIE

In planar [Formula: see text] supersymmetric Yang–Mills theory we have studied one kind of (locally) BPS Wilson loops composed of a large number of light-like segments, i.e. null zig-zags. These contours oscillate around smooth underlying spacelike paths. At one-loop in perturbation theory, we have compared the finite part of the expectation value of null zig-zags to the finite part of the expectation value of non-scalar-coupled Wilson loops whose contours are the underlying smooth spacelike paths. In arXiv:0710.1060 [hep-th] it was argued that these quantities are equal for the case of a rectangular Wilson loop. Here we present a modest extension of this result to zig-zags of circular shape and zig-zags following non-parallel, disconnected line segments and show analytically that the one-loop finite part is indeed that given by the smooth spacelike Wilson loop without coupling to scalars which the zig-zag contour approximates. We make some comments regarding the generalization to arbitrary shapes.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Simone Giombi ◽  
Bendeguz Offertaler

Abstract We study the half-BPS circular Wilson loop in $$ \mathcal{N} $$ N = 4 super Yang-Mills with orthogonal gauge group. By supersymmetric localization, its expectation value can be computed exactly from a matrix integral over the Lie algebra of SO(N). We focus on the large N limit and present some simple quantitative tests of the duality with type IIB string theory in AdS5× ℝℙ5. In particular, we show that the strong coupling limit of the expectation value of the Wilson loop in the spinor representation of the gauge group precisely matches the classical action of the dual string theory object, which is expected to be a D5-brane wrapping a ℝℙ4 subspace of ℝℙ5. We also briefly discuss the large N, large λ limits of the SO(N) Wilson loop in the symmetric/antisymmetric representations and their D3/D5-brane duals. Finally, we use the D5-brane description to extract the leading strong coupling behavior of the “bremsstrahlung function” associated to a spinor probe charge, or equivalently the normalization of the two-point function of the displacement operator on the spinor Wilson loop, and obtain agreement with the localization prediction.


2018 ◽  
Vol 175 ◽  
pp. 12010
Author(s):  
Akihiro Shibata ◽  
Seikou Kato ◽  
Kei-Ichi Kondo ◽  
Ryutaro Matsudo

We study the double-winding Wilson loops in the SU(N) Yang-Mills theory on the lattice. We discuss how the area law falloff of the double-winding Wilson loop average is modified by changing the enclosing contours C1 and C2 for various values of the number of color N. By using the strong coupling expansion, we evaluate the double-winding Wilson loop average in the lattice SU(N) Yang-Mills theory. Moreover, we compute the double-winding Wilson loop average by lattice Monte Carlo simulations for SU(2) and SU(3). We further discuss the results from the viewpoint of the Non-Abelian Stokes theorem in the higher representations.


Author(s):  
YUJI SATOH

We discuss gluon scattering amplitudes/null-polygonal Wilson loops of [Formula: see text] super Yang-Mills theory at strong coupling based on the gauge/string duality and its underlying integrability. We focus on the amplitudes/Wilson loops corresponding to the minimal surfaces in AdS3, which are described by the thermodynamic Bethe ansatz equations of the homogeneous sine-Gordon model. Using conformal perturbation theory and an interesting relation between the g-function (boundary entropy) and the T-function, we derive analytic expansions around the limit where the Wilson loops become regular-polygonal. We also compare our analytic results with those at two loops, to find that the rescaled remainder functions are close to each other for all multi-point amplitudes.


2011 ◽  
Vol 2011 (9) ◽  
Author(s):  
F. Passerini ◽  
K. Zarembo
Keyword(s):  

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
M. Beccaria ◽  
A.A. Tseytlin

Abstract Localization approach to $$ \mathcal{N} $$ N = 2 superconformal SU(N) × SU(N) quiver theory leads to a non-Gaussian two-matrix model representation for the expectation value of BPS circular SU(N) Wilson loop $$ \left\langle \mathcal{W}\right\rangle $$ W . We study the subleading 1/N2 term in the large N expansion of $$ \left\langle \mathcal{W}\right\rangle $$ W at weak and strong coupling. We concentrate on the case of the symmetric quiver with equal gauge couplings which is equivalent to the ℤ2 orbifold of the SU(2N) $$ \mathcal{N} $$ N = 4 SYM theory. This orbifold gauge theory should be dual to type IIB superstring in AdS5 × (S5/ℤ2). We present a string theory argument suggesting that the 1/N2 term in $$ \left\langle \mathcal{W}\right\rangle $$ W in the orbifold theory should have the same strong-coupling asymptotics λ3/2 as in the $$ \mathcal{N} $$ N = 4 SYM case. We support this prediction on the gauge theory side by a numerical study of the localization matrix model. We also find a relation between the 1/N2 term in the Wilson loop expectation value and the derivative of the free energy of the orbifold gauge theory on 4-sphere.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
M. Billò ◽  
M. Frau ◽  
F. Galvagno ◽  
A. Lerda ◽  
A. Pini

Abstract We consider $$ \mathcal{N} $$ N = 2 superconformal quiver gauge theories in four dimensions and evaluate the chiral/anti-chiral correlators of single-trace operators. We show that it is convenient to form particular twisted and untwisted combinations of these operators suggested by the dual holographic description of the theory. The various twisted sectors are orthogonal and the correlators in each sector have always the same structure, as we show at the lowest orders in perturbation theory with Feynman diagrams. Using localization we then map the computation to a matrix model. In this way we are able to obtain formal expressions for the twisted correlators in the planar limit that are valid for all values of the ‘t Hooft coupling λ, and find that they are proportional to 1/λ at strong coupling. We successfully test the correctness of our extrapolation against a direct numerical evaluation of the matrix model and argue that the 1/λ behavior qualitatively agrees with the holographic description.


2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Xinyi Chen-Lin

We study the circular Wilson loop in the symmetric representation of U(N)U(N) in mathcal{N} = 4𝒩=4 super-Yang-Mills (SYM). In the large NN limit, we computed the exponentially-suppressed corrections for strong coupling, which suggests non-perturbative physics in the dual holographic theory. We also computed the next-to-leading order term in 1/N1/N, and the result matches with the exact result from the kk-fundamental representation.


Sign in / Sign up

Export Citation Format

Share Document