Compact Representation of Conditional Probability for Rule-Based Mobile Context-Aware Systems

Author(s):  
Szymon Bobek ◽  
Grzegorz J. Nalepa
2017 ◽  
Vol 39 ◽  
pp. 159-179 ◽  
Author(s):  
Szymon Bobek ◽  
Grzegorz J. Nalepa

2021 ◽  
Vol 9 (2) ◽  
pp. 1022-1030
Author(s):  
Shivakumar. C, Et. al.

In this Context-aware computing era, everything is being automated and because of this, smart system’s count been incrementing day by day.  The smart system is all about context awareness, which is a synergy with the objects in the system. The result of the interaction between the users and the sensors is nothing but the repository of the vast amount of context data. Now the challenging task is to represent, store, and retrieve context data. So, in this research work, we have provided solutions to context storage. Since the data generated from the sensor network is dynamic, we have represented data using Context dimension tree, stored the data in cloud-based ‘MongoDB’, which is a NoSQL. It provides dynamic schema and reasoning data using If-Then rules with RETE algorithm. The Novel research work is the integration of NoSQL cloud-based MongoDB, rule-based RETE algorithm and CLIPS tool architecture. This integration helps us to represent, store, retrieve and derive inferences from the context data efficiently..                       


Author(s):  
Theodoros Anagnostopoulos

Mobile context-aware applications are required to sense and react to changing environment conditions. Such applications, usually, need to recognize, classify, and predict context in order to act efficiently, beforehand, for the benefit of the user. In this chapter, the authors propose a mobility prediction model, which deals with context representation and location prediction of moving users. Machine Learning (ML) techniques are used for trajectory classification. Spatial and temporal on-line clustering is adopted. They rely on Adaptive Resonance Theory (ART) for location prediction. Location prediction is treated as a context classification problem. The authors introduce a novel classifier that applies a Hausdorff-like distance over the extracted trajectories handling location prediction. Two learning methods (non-reinforcement and reinforcement learning) are presented and evaluated. They compare ART with Self-Organizing Maps (SOM), Offline kMeans, and Online kMeans algorithms. Their findings are very promising for the use of the proposed model in mobile context aware applications.


Author(s):  
Luca Costabello ◽  
Fabien Gandon

In this paper the authors focus on context-aware adaptation for linked data on mobile. They split up the problem in two sub-questions: how to declaratively describe context at RDF presentation level, and how to overcome context imprecisions and incompleteness when selecting the proper context description at runtime. The authors answer their two-fold research question with PRISSMA, a context-aware presentation layer for Linked Data. PRISSMA extends the Fresnel vocabulary with the notion of mobile context. Besides, it includes an algorithm that determines whether the sensed context is compatible with some context declarations. The algorithm finds optimal error-tolerant subgraph isomorphisms between RDF graphs using the notion of graph edit distance and is sublinear in the number of context declarations in the system.


Author(s):  
Darren Black ◽  
Nils Jakob Clemmensen ◽  
Mikael B. Skov

Shopping in the real world is becoming an increasingly interactive experience as stores integrate various technologies to support shoppers. Based on an empirical study of supermarket shoppers, the authors designed a mobile context-aware system called the Context-Aware Shopping Trolley (CAST). The purpose of CAST is to support shopping in supermarkets through context-awareness and acquiring user attention, thus, the authors’ interactive trolley guides and directs shoppers in the handling and finding of groceries. An empirical evaluation showed that shoppers using CAST behaved differently than shoppers using a traditional trolley. Specifically, shoppers using CAST exhibited a more uniform pattern of product collection and found products more easily while travelling a shorter distance. As such, the study finds that CAST supported the supermarket shopping activity.


Author(s):  
Anind K. Dey ◽  
Jonna Häkkilä

Context-awareness is a maturing area within the field of ubiquitous computing. It is particularly relevant to the growing sub-field of mobile computing as a user’s context changes more rapidly when a user is mobile, and interacts with more devices and people in a greater number of locations. In this chapter, we present a definition of context and context-awareness and describe its importance to human-computer interaction and mobile computing. We describe some of the difficulties in building context-aware applications and the solutions that have arisen to address these. Despite these solutions, users have difficulties in using and adopting mobile context-aware applications. We discuss these difficulties and present a set of eight design guidelines that can aid application designers in producing more usable and useful mobile context-aware applications.


Author(s):  
Iqbal H. Sarker ◽  
Alan Colman ◽  
Jun Han ◽  
Paul Watters

Sign in / Sign up

Export Citation Format

Share Document