Characterization of Cover-Plate Bolted Steel Joints with Full-Field Measurements

Author(s):  
Evelyne Toussaint ◽  
Abdelhamid Bouchaïr ◽  
Michel Grédiac ◽  
Sébastien Durif
2008 ◽  
Vol 59 ◽  
pp. 140-149 ◽  
Author(s):  
Pauline Schlosser ◽  
Denis Favier ◽  
Herve Louche ◽  
Laurent Orgéas

The tension behaviour of initially austenitic NiTi thin wall tubes was investigated using measurements of temperature and strain fields simultaneously. The first specimen was totally superelastic but the unloading was performed before the end of the loading stress plateau. The second specimen loading was performed beyond the stress plateau to allow analyzing the unloading, but was not superelastic and at a faster strain rate. Both tests show homogeneous behaviour at the beginning of the loading. Strong localisations, taking the shape of helical bands, are observed during the loading and unloading stress plateaus. To obtain quantitative energy information, allowing a better recognition of the deformation mechanisms, an estimation of the local heat sources based on image processing of the temperature fields is presented. Two methods of heat sources estimation allowing analysis of deformation mechanisms are proposed in the present paper: first during the homogeneous, then during localized stages.


2014 ◽  
Vol 595 ◽  
pp. 306-317 ◽  
Author(s):  
Roberto Fedele ◽  
Antonia Ciani ◽  
Luca Galantucci ◽  
Valentina Casalegno ◽  
Andrea Ventrella ◽  
...  

2021 ◽  
Author(s):  
ROBERT LIVINGSTON ◽  
BEHRAD KOOHBOR

Macroscopic mechanical and failure properties of fiber-reinforced composites depend strongly on the properties of the fiber-matrix interface. For example, transverse cracking behavior and interlaminar shear strength of composites can be highly sensitive to the characteristics of the fiber-matrix interface. Despite its importance, experimental characterization of the mechanical behavior of the fibermatrix interface under normal loading conditions has been limited. This work reports on an experimental approach that uses in situ full-field digital image correlation (DIC) measurements to quantify the mechanical and failure behaviors at the fiber-matrix interface. Single fiber model composite samples are fabricated from a proprietary epoxy embedding a single glass rod. These samples are then tested under transverse tension. DIC is used to measure the deformation and strain fields in the glass rod, epoxy, and their interface vicinity. Initiation and propagation of the fiber-matrix debond are discussed. Full-field measurements are shown to facilitate the quantitative analysis of the traction-separation laws at the fiber-matrix interface subjected to transverse tension.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Jennifer Cauzzo ◽  
Nikhil Jayakumar ◽  
Balpreet Singh Ahluwalia ◽  
Azeem Ahmad ◽  
Nataša Škalko-Basnet

The rapid development of nanomedicine and drug delivery systems calls for new and effective characterization techniques that can accurately characterize both the properties and the behavior of nanosystems. Standard methods such as dynamic light scattering (DLS) and fluorescent-based assays present challenges in terms of system’s instability, machine sensitivity, and loss of tracking ability, among others. In this study, we explore some of the downsides of batch-mode analyses and fluorescent labeling, while introducing quantitative phase microscopy (QPM) as a label-free complimentary characterization technique. Liposomes were used as a model nanocarrier for their therapeutic relevance and structural versatility. A successful immobilization of liposomes in a non-dried setup allowed for static imaging conditions in an off-axis phase microscope. Image reconstruction was then performed with a phase-shifting algorithm providing high spatial resolution. Our results show the potential of QPM to localize subdiffraction-limited liposomes, estimate their size, and track their integrity over time. Moreover, QPM full-field-of-view images enable the estimation of a single-particle-based size distribution, providing an alternative to the batch mode approach. QPM thus overcomes some of the drawbacks of the conventional methods, serving as a relevant complimentary technique in the characterization of nanosystems.


Author(s):  
Bahador Farshchian ◽  
Junseo Choi ◽  
Sunggook Park

This paper presents the fabrication of a 3D microchannel whose sidewalls and bottom surface are patterned with ratchets using a modified 3D molding process. In the modified 3D molding process the surface of poly(methyl methacrylate) (PMMA) is first patterned using a brass mold having ratchet structures. Then PDMS prepolymer was spin coated over the surface of micropatterned PMMA and cured followed by the primary molding using a brass mold having a T-conjunction protrusion. After primary molding demolding was done by first demolding the brass mold and then peeling off PDMS stamp from PMMA substrate. By setting a 45° angle between direction of ratchets patterned on the surface of PMMA and the brass mold protrusion prior to primary molding 45° slanted ratchets were formed on the sidewall and bottom surface of microchannel using the modified 3D molding. The scanning electron microscope (SEM) micrographs show a successful integration of micropatterns inside the microchannel. Holes were drilled in the inlet and outlet area of the 3D channel before bonding. A solvent bonding technique was used for bonding of 3D channel to a plain cover plate. After bonding capillary tubes were inserted into the holes and glued to the chip using an epoxy glue. For characterization of mixing fluorescence intensity was quantified in the 3D microchannel as deionized water and fluorescein dye injected from different inlets of 3D micromixer were mixed along the 3D microchannel and mixing efficiency was calculated. The results were compared with the data obtained for similar microdevice whose surfaces were not patterned. The results demonstrate at a specific flow rate a faster mixing occurs in a microdevice whose sidewall and bottom surface are patterned with slanted 45° ratchets.


Sign in / Sign up

Export Citation Format

Share Document