Neural Network Based PID Control for Quadrotor Aircraft

Author(s):  
Dandan Zhao ◽  
Changyin Sun ◽  
Qingling Wang ◽  
Wankou Yang
2021 ◽  
Vol 11 (6) ◽  
pp. 2685
Author(s):  
Guojin Pei ◽  
Ming Yu ◽  
Yaohui Xu ◽  
Cui Ma ◽  
Houhu Lai ◽  
...  

A compliant constant-force actuator based on the cylinder is an important tool for the contact operation of robots. Due to the nonlinearity and time delay of the pneumatic system, the traditional proportional–integral–derivative (PID) method for constant force control does not work so well. In this paper, an improved PID control method combining a backpropagation (BP) neural network and the Smith predictor is proposed. Through MATLAB simulation and experimental validation, the results show that the proposed method can shorten the maximum overshoot and the adjustment time compared with traditional the PID method.


Sensors ◽  
2016 ◽  
Vol 16 (9) ◽  
pp. 1429 ◽  
Author(s):  
Rodrigo Hernández-Alvarado ◽  
Luis García-Valdovinos ◽  
Tomás Salgado-Jiménez ◽  
Alfonso Gómez-Espinosa ◽  
Fernando Fonseca-Navarro

2014 ◽  
Vol 599-601 ◽  
pp. 827-830 ◽  
Author(s):  
Wei Tian ◽  
Yi Zhun Peng ◽  
Pan Wang ◽  
Xiao Yu Wang

Taking the temperature control of a refrigerated space as example, this paper designs a controller which is based on traditional PID operation and BP neural network algorithm. It has better steady-state precision and adaptive ability. Firstly, the article introduces the concepts of the refrigerated space, PID and BP algorithm. Then, the temperature control of refrigerated space is simulated in MATLAB. The PID parameters will be adjusted by simulation in BP Neural Network. The PID control parameters could be created real-time online, which makes the controller performance best.


2011 ◽  
Vol 2-3 ◽  
pp. 12-17
Author(s):  
Sheng Lin Mu ◽  
Kanya Tanaka

In this paper, we propose a novel scheme of IMC-PID control combined with a tribes type neural network (NN) for the position control of ultrasonic motor (USM). In this method, the NN controller is employed for tuning the parameter in IMC-PID control. The weights of NN are designed to be updated by the tribes-particle swarm optimization (PSO) algorithm. This method makes it possible to compensate for the characteristic changes and nonlinearity of USM. The parameter-free tribes-PSO requires no information about the USM beforehand; hence its application overcomes the problem of Jacobian estimation in the conventional back propagation (BP) method of NN. The effectiveness of the proposed method is confirmed by experiments.


Sign in / Sign up

Export Citation Format

Share Document