Role of Growth Factors in Modulation of the Microvasculature in Adult Skeletal Muscle

Author(s):  
Gayle Smythe
2021 ◽  
Vol 118 (37) ◽  
pp. e2021013118 ◽  
Author(s):  
Sebastian Mathes ◽  
Alexandra Fahrner ◽  
Umesh Ghoshdastider ◽  
Hannes A. Rüdiger ◽  
Michael Leunig ◽  
...  

Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus–mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus <55 y showed activation of FGF-2–dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Karla Garcia‐Pelagio ◽  
Joaquin Muriel ◽  
Linda Lund ◽  
Meredith Bond ◽  
Robert Bloch

1996 ◽  
Vol 21 (4) ◽  
pp. 236-250 ◽  
Author(s):  
Jamie MacGregor ◽  
Wade S. Parkhouse

The role of the insulin-like growth factors I and II (IGF-I and IGF-II), previously known as the somatomedins, in general growth and development of various tissues has been known for many years. Thought of exclusively as endocrine factors produced by the liver, and under the control of growth hormone, the somatomedins were known as the intermediaries by which growth hormone exerted its cellular effects during tissue growth and maturation. Eventually it was discovered that virtually every tissue type is capable of autocrine production of the IGFs, and their involvement in skeletal muscle tissue repair and regeneration became apparent. Recent advances in technology have allowed the characterisation of many of the different growth factors believed to play a role in muscle regeneration, and experimental manipulations of cells in culture have provided insight into the effects of the various growth factors on the myoblast. This paper explores the potential role of the IGFs in skeletal muscle regeneration. A critical role of IGF-II in terminal differentiation of proliferating muscle precurser cells following injury is proposed. Key words: growth factors, myogenesis, skeletal muscle regeneration


1993 ◽  
Vol 106 (2) ◽  
pp. 579-589 ◽  
Author(s):  
Z.Z. Bao ◽  
M. Lakonishok ◽  
S. Kaufman ◽  
A.F. Horwitz

Immunization against a 70 kDa band that co-purifies with skeletal muscle integrins has resulted in an antibody directed against the avain alpha 7 integrin subunit. The specificity of the antibody was established by patterns of tissue staining and cross-reactivity with antibodies directed against the cytoplasmic domain of the rat alpha 7 cytoplasmic domain. On sections of adult skeletal muscle the alpha 7 integrin was enriched in the myotendinous junction (MTJ). This localization was unique as neither the alpha 1, alpha 3, alpha 5, alpha 6 and alpha v subunit localizes in the myotendinous junction. The distribution of the alpha 7 subunit in the MTJ was examined during embryonic development. alpha 7 expression in the junction is first apparent around embryo day 14 and is almost exclusively at the developing MTJ at this stage. alpha 3 is expressed with distinctive punctate staining around the junctional area in earlier embryos (11-day). The time of appearance of the alpha 7 subunit in the MTJ correlates with the insertion of myofibrils into subsarcolemmal densities and folding of the junctional membrane, suggesting a role of the alpha 7 integrin in this process. Vinculin is present throughout development of the myotendinous junction, suggesting that the alpha 7 integrin recognizes a preformed cytoskeletal structure. The presence of the alpha 7 subunit in the myotendinous junction and the alpha 5 subunit in the adhesion plaque demonstrates a molecular difference between these two adherens junctions. It also points to possible origins of junctional specificity on muscle. Differences between these two junctions were developed further using an antibody against phosphotyrosine (PY20). Phosphotyrosine is thought to participate in the organization and stabilization of adhesions. The focal adhesion and the neuromuscular junction, but not the MTJ, contained proteins phosphorylated on tyrosine.


2010 ◽  
Vol 21 (13) ◽  
pp. 2182-2190 ◽  
Author(s):  
Charlene Clow ◽  
Bernard J. Jasmin

In adult skeletal muscle, brain-derived neurotrophic factor (BDNF) is expressed in myogenic progenitors known as satellite cells. To functionally address the role of BDNF in muscle satellite cells and regeneration in vivo, we generated a mouse in which BDNF is specifically depleted from skeletal muscle cells. For comparative purposes, and to determine the specific role of muscle-derived BDNF, we also examined muscles of the complete BDNF−/− mouse. In both models, expression of the satellite cell marker Pax7 was significantly decreased. Furthermore, proliferation and differentiation of primary myoblasts was abnormal, exhibiting delayed induction of several markers of differentiation as well as decreased myotube size. Treatment with exogenous BDNF protein was sufficient to rescue normal gene expression and myotube size. Because satellite cells are responsible for postnatal growth and repair of skeletal muscle, we next examined whether regenerative capacity was compromised. After injury, BDNF-depleted muscle showed delayed expression of several molecular markers of regeneration, as well as delayed appearance of newly regenerated fibers. Recovery of wild-type BDNF levels was sufficient to restore normal regeneration. Together, these findings suggest that BDNF plays an important role in regulating satellite cell function and regeneration in vivo, particularly during early stages.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nathalie Rion ◽  
Perrine Castets ◽  
Shuo Lin ◽  
Leonie Enderle ◽  
Judith R. Reinhard ◽  
...  

Abstract Background The mammalian target of rapamycin complex 2 (mTORC2), containing the essential protein rictor, regulates cellular metabolism and cytoskeletal organization by phosphorylating protein kinases, such as PKB/Akt, PKC, and SGK. Inactivation of mTORC2 signaling in adult skeletal muscle affects its metabolism, but not muscle morphology and function. However, the role of mTORC2 in adult muscle stem cells (MuSCs) has not been investigated. Method Using histological, biochemical, and molecular biological methods, we characterized the muscle phenotype of mice depleted for rictor in the Myf5-lineage (RImyfKO) and of mice depleted for rictor in skeletal muscle fibers (RImKO). The proliferative and myogenic potential of MuSCs was analyzed upon cardiotoxin-induced injury in vivo and in isolated myofibers in vitro. Results Skeletal muscle of young and 14-month-old RImyfKO mice appeared normal in composition and function. MuSCs from young RImyfKO mice exhibited a similar capacity to proliferate, differentiate, and fuse as controls. In contrast, the number of MuSCs was lower in young RImyfKO mice than in controls after two consecutive rounds of cardiotoxin-induced muscle regeneration. Similarly, the number of MuSCs in RImyfKO mice decreased with age, which correlated with a decline in the regenerative capacity of mutant muscle. Interestingly, reduction in the number of MuSCs was also observed in 14-month-old RImKO muscle. Conclusions Our study shows that mTORC2 signaling is dispensable for myofiber formation, but contributes to the homeostasis of MuSCs. Loss of mTORC2 does not affect their myogenic function, but impairs the replenishment of MuSCs after repeated injuries and their maintenance during aging. These results point to an important role of mTORC2 signaling in MuSC for muscle homeostasis.


2006 ◽  
Vol 575 (3) ◽  
pp. 913-924 ◽  
Author(s):  
Thomas Ducret ◽  
Clarisse Vandebrouck ◽  
My Linh Cao ◽  
Jean Lebacq ◽  
Philippe Gailly

2002 ◽  
Vol 282 (5) ◽  
pp. C984-C992 ◽  
Author(s):  
Patrick O. Mitchell ◽  
Stephen T. Mills ◽  
Grace K. Pavlath

Adequate muscle mass is critical for human health. The molecular pathways regulating maintenance and growth of adult skeletal muscle are little understood. Calcineurin (CN) is implicated as a key signaling molecule in hypertrophy. Whether CN is involved in all forms of muscle growth or in different muscles is unknown. Here, we examine the role of CN in regulating maintenance of muscle size and growth of atrophied muscle in the soleus (slow) and plantaris (fast). The CN inhibitor cyclosporin A (CsA) differentially affects muscle growth and maintenance depending on muscle phenotype. The plantaris is more severely affected by CsA than the soleus in both growth conditions. One-week vs. 2-wk CsA treatment suggests that both CN-dependent and CN-independent growth occur in the atrophied soleus, whereas plantaris growth appears to be totally CN dependent. Our results suggest that CN regulates multiple types of muscle growth, depending both on muscle phenotype and stage of myofiber growth. Differential expression of components of the CN pathway occurs and may contribute to the differences between muscles.


Sign in / Sign up

Export Citation Format

Share Document