Alpha 7 beta 1 integrin is a component of the myotendinous junction on skeletal muscle

1993 ◽  
Vol 106 (2) ◽  
pp. 579-589 ◽  
Author(s):  
Z.Z. Bao ◽  
M. Lakonishok ◽  
S. Kaufman ◽  
A.F. Horwitz

Immunization against a 70 kDa band that co-purifies with skeletal muscle integrins has resulted in an antibody directed against the avain alpha 7 integrin subunit. The specificity of the antibody was established by patterns of tissue staining and cross-reactivity with antibodies directed against the cytoplasmic domain of the rat alpha 7 cytoplasmic domain. On sections of adult skeletal muscle the alpha 7 integrin was enriched in the myotendinous junction (MTJ). This localization was unique as neither the alpha 1, alpha 3, alpha 5, alpha 6 and alpha v subunit localizes in the myotendinous junction. The distribution of the alpha 7 subunit in the MTJ was examined during embryonic development. alpha 7 expression in the junction is first apparent around embryo day 14 and is almost exclusively at the developing MTJ at this stage. alpha 3 is expressed with distinctive punctate staining around the junctional area in earlier embryos (11-day). The time of appearance of the alpha 7 subunit in the MTJ correlates with the insertion of myofibrils into subsarcolemmal densities and folding of the junctional membrane, suggesting a role of the alpha 7 integrin in this process. Vinculin is present throughout development of the myotendinous junction, suggesting that the alpha 7 integrin recognizes a preformed cytoskeletal structure. The presence of the alpha 7 subunit in the myotendinous junction and the alpha 5 subunit in the adhesion plaque demonstrates a molecular difference between these two adherens junctions. It also points to possible origins of junctional specificity on muscle. Differences between these two junctions were developed further using an antibody against phosphotyrosine (PY20). Phosphotyrosine is thought to participate in the organization and stabilization of adhesions. The focal adhesion and the neuromuscular junction, but not the MTJ, contained proteins phosphorylated on tyrosine.

1996 ◽  
Vol 109 (13) ◽  
pp. 3139-3150 ◽  
Author(s):  
C.C. Yao ◽  
B.L. Ziober ◽  
A.E. Sutherland ◽  
D.L. Mendrick ◽  
R.H. Kramer

The alpha 7 beta 1 integrin is specifically expressed by skeletal and cardiac muscles, and its expression and alternative mRNA splicing at the cytoplasmic domain are developmentally regulated. We analyzed the role of alpha 7 integrin in mediating myoblast adhesion and motility on different laminin isoforms. Mouse C2C12 and MM14 myoblast cell lines were found by flow cytometry and immunoprecipitation to express high levels of the alpha 7 integrin. Overall expression of alpha 7 increased as the C2C12 myoblasts differentiated; myoblasts expressed only the alpha 7B cytoplasmic variant whereas in differentiating myotubes alpha 7A increased markedly. Function-perturbing monoclonal antibodies generated to alpha 7 integrin efficiently blocked both adhesion and migration of MM14 and C2C12 mouse myoblasts on laminin 1. Other studies with MM14 myoblasts showed that alpha 7 is also a receptor for laminin 2/4 (human placental merosins) but not for epithelial-cell-specific laminin 5. Blocking antibody to alpha 7 only partially inhibited adhesion to laminin 2/4 but almost completely blocked motility on this substrate. Finally, to assess the potential role of the alpha 7 cytoplasmic domain, CHO cells were stably transfected to expressed chimeric alpha 5 cDNA constructs containing the wild-type alpha 5 or the alpha 7A or alpha 7B cytoplasmic domain; all forms of the integrin showed identical activities for adhesion, migration, proliferation, and matrix assembly on fibronectin substrates. These results established that alpha 7 beta 1 receptor can promote myoblast adhesion and motility on a restricted number of laminin isoforms and may be important in myogenic precursor recruitment during regeneration and differentiation.


2021 ◽  
Vol 118 (37) ◽  
pp. e2021013118 ◽  
Author(s):  
Sebastian Mathes ◽  
Alexandra Fahrner ◽  
Umesh Ghoshdastider ◽  
Hannes A. Rüdiger ◽  
Michael Leunig ◽  
...  

Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus–mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus <55 y showed activation of FGF-2–dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Karla Garcia‐Pelagio ◽  
Joaquin Muriel ◽  
Linda Lund ◽  
Meredith Bond ◽  
Robert Bloch

1993 ◽  
Vol 106 (4) ◽  
pp. 1139-1152 ◽  
Author(s):  
W.K. Song ◽  
W. Wang ◽  
H. Sato ◽  
D.A. Bielser ◽  
S.J. Kaufman

We recently reported the cloning and sequencing of the alpha 7 integrin chain and its regulated expression during the development of skeletal muscle (Song et al. (1992) J. Cell Biol. 117, 643–657). The alpha 7 chain is expressed during the development of the myogenic lineage and on adult muscle fibers and this suggests that it participates in multiple and diverse functions at different times during muscle development. One interesting portion of this isoform is its cytoplasmic domain; comprised of 77 amino acids it is the largest in the alpha chains thus reported. In these experiments we begin to study the potential functions of the alpha 7 cytoplasmic domain by analyzing homologies between the rat and human sequences, by immunologic studies using an anti-cytoplasmic domain antiserum, and by identifying two alternate forms. In keeping with the nomenclature used to describe the alpha 3 and alpha 6 alternate cytoplasmic domains, we refer to the originally reported species as alpha 7B and the two additional forms as alpha 7A and alpha 7C. These three cytoplasmic domains likely arise as a consequence of alternate splicing. A splice site at the junctions of the transmembrane and cytoplasmic domains is used to generate the alpha 3, alpha 6 and alpha 7 A and B forms. The alpha 7A form RNA contains an additional 113 nucleotides compared to the B form, and a common coding region in the A and B form RNAs is used in alternate reading frames. Part of the coding region of alpha 7B appears to be used as the 3′-untranslated region of the alpha 7A form. The alpha 7C mRNA is 595 nucleotides smaller than the alpha 7B RNA and part of the 3′-untranslated region of the alpha 7B isoform is used as coding sequence in alpha 7C. There is developmental specificity in expression of these alternate mRNAs: alpha 7A and alpha 7C transcripts are found upon terminal myogenic differentiation whereas alpha 7B is present earlier in replicating cells and diminishes upon differentiation. We suggest this selective expression of the alpha 7 cytoplasmic domains underlies the diversity in function of the alpha 7 beta 1 integrin at different stages of muscle development. Immunochemical analyses indicate that the alpha 7B cytoplasmic domain undergoes a change in conformation in response to binding laminin or upon crosslinking initiated with antibody reactive with the integrin extracellular domain. Crosslinking also promotes association of the integrin with the cell cytoskeleton.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 110 (2) ◽  
pp. 169-178 ◽  
Author(s):  
P. Sanchez-Aparicio ◽  
A.M. Martinez de Velasco ◽  
C.M. Niessen ◽  
L. Borradori ◽  
I. Kuikman ◽  
...  

The high molecular mass protein, HD1, is a structural protein present in hemidesmosomes as well as in distinct adhesion structures termed type II hemidesmosomes. We have studied the distribution and expression of HD1 in the GD25 cells, derived from murine embryonal stem cells deficient for the beta 1 integrin subunit. We report here that these cells possess HD1 but not BP230 or BP180; two other hemidesmosomal constituents, and express only traces of the alpha 6 beta 4 integrin. By immunofluorescence and interference reflection microscopy HD1 was found together with vinculin at the end of actin filaments in focal contacts. In OVCAR-4 cells, derived from a human ovarian carcinoma which, like GD25 cells, only weakly express alpha 6 beta 4, HD1 was also localized in focal contacts. Upon transfection of both GD25 and OVCAR-4 cells with cDNA for the human beta 4 subunit the subcellular distribution of HD1 changed significantly. HD1 is then no longer present in focal contacts but in other structures at cell-substrate contacts, colocalized with alpha 6 beta 4. These junctional complexes are probably the equivalent of the type II hemidesmosomes. Transfection of GD25 cells with beta 1 cDNA did not affect the distribution of HD1, which indicates that the localization of HD1 in focal contacts was not due to the absence of beta 1. Moreover, in GD25 cells transfected with cDNA encoding a beta 4/beta 1 chimera, in which the cytoplasmic domain of beta 4 was replaced by that of beta 1, the distribution of HD1 was unaffected. Our findings indicate that the cytoplasmic domain of beta 4 determines the subcellular distribution of HD1 and emphasize the important role of alpha 6 beta 4 in the assembly of hemidesmosomes and other junctional adhesive complexes containing HD1.


1994 ◽  
Vol 124 (6) ◽  
pp. 1039-1046 ◽  
Author(s):  
S Malek-Hedayat ◽  
LH Rome

We have investigated the expression of integrins by rat oligodendroglia grown in primary culture and the functional role of these proteins in myelinogenesis. Immunochemical analysis, using antibodies to a number of alpha and beta integrin subunits, revealed that oligodendrocytes express only one detectable integrin receptor complex (alpha OL beta OL). This complex is immunoprecipitated by a polyclonal anti-human beta 1 integrin subunit antibody. In contrast, astrocytes, the other major glial cell type in brain, express multiple integrins including alpha 1 beta 1, alpha 3 beta 1, and alpha 5 beta 1 complexes that are immunologically and electrophoretically indistinguishable from integrins expressed by rat fibroblasts. The beta subunit of the oligodendrocyte integrin (beta OL) and rat fibroblast beta 1 have different electrophoretic mobilities in SDS-PAGE. However, the two beta subunits appear to be highly related based on immunological cross-reactivity and one-dimensional peptide mapping. After removal of N-linked carbohydrate chains, beta OL and beta 1 comigrated in SDS-PAGE and peptide maps of the two deglycosylated subunits were identical, suggesting differential glycosylation of beta 1 and beta OL accounts entirely for their size differences. The oligodendrocyte alpha subunit, alpha OL, was not immunoprecipitated by antibodies against well characterized alpha chains which are known to associate with beta 1 (alpha 3, alpha 4, and alpha 5). However, an antibody to alpha 8, a more recently identified integrin subunit, did precipitate two integrin subunits with electrophoretic mobilities in SDS-PAGE identical to alpha OL and beta OL. Functional studies indicated that disruption of oligodendrocyte adhesion to a glial-derived matrix by an RGD-containing synthetic peptide resulted in a substantial decrease in the level of mRNAs for several myelin components including myelin basic protein (MBP), proteolipid protein (PLP), and cyclic nucleotide phosphodiesterase (CNP). These results suggest that integrin-mediated adhesion of oligodendrocytes may trigger signal(s) that induce the expression of myelin genes and thus influence oligodendrocyte differentiation.


Diagnosis ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 189-201 ◽  
Author(s):  
Evangelos Giannitsis ◽  
Christian Mueller ◽  
Hugo A. Katus

AbstractSkeletal myopathies have been suggested as a non-cardiac cause of elevations of cardiac troponin (cTn), particularly cardiac troponin T (cTnT). This is of major clinical relevance and concern as cTn plays a major role in the early diagnosis of myocardial infarction (MI). While both the incidence as well as the true pathophysiology (cardiac versus non-cardiac) underlying elevations in cTn in skeletal myopathies remain largely unknown, re-expression of cTnT in regenerating adult skeletal muscle has been suggested as a possible contributor. However, unequivocal protein characterization in skeletal muscle and quantification of the relative amounts of this possible signal versus the cTn signal derived from true cardiomyocyte injury remains elusive. Alternatively, minor cross-reactivity of the cTnT (and possibly at times also cTnI) detection and capture antibodies used in current monoclonal immunoassays with the skeletal troponin T or I isoform may be considered. Both would represent “false positive” elevations from a clinical perspective and would need to be reliably differentiated from “true positive elevations” from subclinical cardiomyocyte injury not detectable by currently available imaging techniques such as echocardiography and contrast enhanced magnetic resonance imaging (MRI), which have at least a 5 times lower sensitivity for cardiomyocyte injury. This review aims to explore the currently available data, its methodological limitations and provide guidance to clinicians to avoid misinterpretation of cTn concentrations.


1995 ◽  
Vol 108 (7) ◽  
pp. 2573-2581 ◽  
Author(s):  
K.A. McDonald ◽  
M. Lakonishok ◽  
A.F. Horwitz

The development of the myofibrillar apparatus in skeletal muscle is a process in which transmembrane linkages with adhesion molecules are implicated. Integrins are one class of transmembrane adhesion receptors which appear to mediate these interactions. Two prominent linkages are at the myotendinous junction (MTJ), which resides at the ends of the cell and connects myofibrils to the tendon, and the costameres, which encircle the girth of the cell and connect the Z-disks to the sarcolemma. In this study we report that the alpha v integrin subunit is a prominent component of the costamere. The alpha v subunit is present initially on developing myotubes in a diffuse staining pattern with some concentration along nascent myofibrils. However, it appears in a striated pattern at the costamere and inconsistently at the M-line following the striation of alpha-actinin and titin but before that of desmin. Its recruitment to preformed striation suggests that it is incorporated into a pre-existing structure. The presence of alpha v in the costamere points to a role in lateral myofibrillar anchorage. In addition, we find that the alpha 3 subunit is transiently associated with myofibrils along portions of their lengths and at their ends during myofibrillogenesis. The alpha 3 subunit staining shows a novel localization and junctional structure. As myofibrils become striated the alpha 3 integrin dissociates from the localized pattern and becomes diffuse. This suggests a possible role in the stabilization of nascent myofibrils prior to striation. Antibody-induced perturbation of adhesion mediated by the integrin beta 1 subunit in developing myotubes inhibits assembly of the sarcomeric architecture.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 107 (3) ◽  
pp. 561-576 ◽  
Author(s):  
G.K. Ojakian ◽  
R. Schwimmer

The role of extracellular matrix in the regulation of epithelial cell surface polarity development was studied using MDCK cells. Previous work has demonstrated that MDCK cells cultured in suspension form epithelial cysts having polarized cell surface distributions of several membrane proteins. When MDCK suspension cysts are incubated within collagen gel, a dynamic epithelial membrane remodeling occurs that is accompanied by the reversal of cell surface polarity (Wang et al., 1990b, J. Cell Sci. 95, 153–165), suggesting that extracellular matrix is important in the modulation of epithelial polarity development. To determine if members of the integrin receptor family were involved, MDCK cyst binding studies were done utilizing antifunctional monoclonal antibodies (AIIB2 and AJ2) against the beta 1 integrin subunit. These antibodies inhibited cyst binding to type I collagen, type IV collagen and laminin, providing evidence that functional beta 1 integrin heterodimers were present on the cyst outer membrane. Integrin localization on suspension cysts demonstrated that the alpha 2, alpha 3 and alpha 6 integrin subunits had a non-polarized cell surface distribution and were localized to both the apical and basolateral membranes. Interestingly, immunofluorescence microscopy determined that the beta 1 subunit had a polarized, basolateral membrane distribution although cyst binding studies using inhibitory monoclonal antibodies suggested that functional beta 1 subunits were present on the cyst outer membrane. After incubation of suspension cysts in collagen gel for 8 hours, the beta 1 integrin subunit was detected on the outer membrane, suggesting that the formation of additional integrin alpha/beta heterodimers could be involved in epithelial remodeling. To establish the role of beta 1 integrins in polarity reversal, experiments were done on cysts incubated in collagen gel. After 6 hours in collagen gel, considerable membrane remodeling had occurred as determined by a reduction in outer membrane microvilli. However, the presence of monoclonal antibody AIIB2 inhibited membrane remodeling by preventing both microvillar loss and the endocytosis of the apical membrane glycoprotein gp135. These results provide strong evidence that members of the beta 1 integrin family are involved in the regulation of epithelial polarity reversal, and demonstrate that MDCK cysts constitute an excellent model system for studying the role of cell-extracellular matrix interactions in the regulation of epithelial plasticity and cell surface polarity development.


1994 ◽  
Vol 300 (3) ◽  
pp. 771-779 ◽  
Author(s):  
L Koivisto ◽  
J Heino ◽  
L Häkkinen ◽  
H Larjava

A large pool of precursor beta 1-integrin subunits is frequently found intracellularly. During malignant transformation this pool often disappears. Concomitantly, integrin-mediated cell-adhesion functions are disturbed, even though no change in the number of beta 1-integrin receptors on the cell surface can be observed. Here, we have studied the role of an intracellular pre-beta 1-integrin pool by transfecting human MG-63 osteosarcoma cells with plasmid construction producing an antisense RNA for the beta 1-integrin subunit. Stable cell clones expressing beta 1-integrin antisense RNA were shown to have a reduced intracellular pool of pre-beta 1-integrin subunits. In the antisense-transfected cells, the synthesis of the beta 1-integrin chain was reduced by 65% compared with non-transfected or vector-transfected MG-63 cells. The decreased synthesis of the beta 1-integrin chain was associated with accelerated maturation of the beta 1-integrin chain (half-maturation time about 5 h in antisense-transfected cells compared with about 10.5 h in control cells), whereas maturation of the alpha-integrin chain slowed down. The amount of beta 1-integrins on the cell surface, however, remained unaltered. Cell clones with the largest decrease in the relative amount of the pre-beta 1-integrin subunit also showed altered integrin function. They were found to synthesize fibronectin, but were unable to assemble it into a fibronectin matrix on the cell surface. Thus we conclude that the repression of biosynthesis of the beta 1-integrin chain leads to alterations in receptor maturation and may be connected with altered receptor function.


Sign in / Sign up

Export Citation Format

Share Document