Identification of Impulse Force at Electrodes’ Cleaning Process in Electrostatic Precipitators (ESP)

Author(s):  
Andrzej Nowak ◽  
Paweł Nowak ◽  
Stanisław Wojciech
2017 ◽  
Vol 59 (6) ◽  
pp. 567-569 ◽  
Author(s):  
Mykola G. Chausov ◽  
Pavlo O. Maruschak ◽  
Andrii P. Pylypenko ◽  
Valentyn B. Berezin ◽  
Olegas Prentkovskis

2019 ◽  
pp. 110-115
Author(s):  
L. M. Mironovich ◽  
A. Yu. Eliseev ◽  
A. Yu. Eliseeva

The paper studies complex effect of various factors on the process of cleaning brass brand L-68, used for the manufacture of heat exchange equipment. It has been established that acids of various strengths can be used as working solutions. The speed of the cleaning process depends on the nature of the acid and its initial concentration. For strong acids, a working solution with low concentration is recommended, followed by an increase in their concentration during the cleaning process. Additional input of oxygen into the system and an increase of the working solution temperature increase the cleaning rate of brass. The cleaning process proceeds without significant changes in the surface configuration, and, consequently, the expenditure of metal.


Author(s):  
Christian Frilund ◽  
Esa Kurkela ◽  
Ilkka Hiltunen

AbstractFor the realization of small-scale biomass-to-liquid (BTL) processes, low-cost syngas cleaning remains a major obstacle, and for this reason a simplified gas ultracleaning process is being developed. In this study, a low- to medium-temperature final gas cleaning process based on adsorption and organic solvent-free scrubbing methods was coupled to a pilot-scale staged fixed-bed gasification facility including hot filtration and catalytic reforming steps for extended duration gas cleaning tests for the generation of ultraclean syngas. The final gas cleaning process purified syngas from woody and agricultural biomass origin to a degree suitable for catalytic synthesis. The gas contained up to 3000 ppm of ammonia, 1300 ppm of benzene, 200 ppm of hydrogen sulfide, 10 ppm of carbonyl sulfide, and 5 ppm of hydrogen cyanide. Post-run characterization displayed that the accumulation of impurities on the Cu-based deoxygenation catalyst (TOS 105 h) did not occur, demonstrating that effective main impurity removal was achieved in the first two steps: acidic water scrubbing (AWC) and adsorption by activated carbons (AR). In the final test campaign, a comprehensive multipoint gas analysis confirmed that ammonia was fully removed by the scrubbing step, and benzene and H2S were fully removed by the subsequent activated carbon beds. The activated carbons achieved > 90% removal of up to 100 ppm of COS and 5 ppm of HCN in the syngas. These results provide insights into the adsorption affinity of activated carbons in a complex impurity matrix, which would be arduous to replicate in laboratory conditions.


2021 ◽  
Vol 11 (8) ◽  
pp. 3655
Author(s):  
Gee-Soo Lee ◽  
Chan-Jung Kim

Microcracks of depth less than 200 μm in mechanical components are difficult to detect because conventional methods such as X-ray or eddy current measurements are less sensitive to such depths. Nonetheless, an efficient microcrack detection method is required urgently in the mechanical industry because microcracks are produced frequently during cold-forming. The frequency response function (FRF) is known to be highly sensitive even to microcracks, and it can be obtained using both the input data of an impact hammer and the response data of an accelerometer. Under the assumption of an impulse force with a similar spectral impulse pattern, spectral response data alone could be used as a crack indicator because the dynamic characteristics of a microcrack may be dependent solely on these measured data. This study investigates the feasibility of microcrack detection using the response data alone through impact tests with a simple rectangular specimen. A simple rectangular specimen with a 200 μm microcrack at one face was prepared. The experimental modal analysis was conducted for the normal (uncracked) specimen and found-first bending mode about 1090 Hz at the X-Y plane (in-plane). Response accelerations were obtained in both at in-plane locations as well as X-Z plane (out-of-plane), and the crack was detected using the coherence function between a normal and a cracked specimen. A comparison of the crack inspection results obtained using the response data and the FRF data indicated the validity of the proposed method.


2019 ◽  
Vol 63 (4) ◽  
pp. 255-267 ◽  
Author(s):  
Yamina Leila Rouabhi ◽  
Philippe Grosjean ◽  
Zitouni Boutiba ◽  
Omar Rouane Hacene ◽  
Jonathan Richir

2021 ◽  
Vol 539 ◽  
pp. 148057
Author(s):  
Shuowen Zhang ◽  
Qingyu Yan ◽  
Jian Lin ◽  
Qunli Zhang ◽  
Yongfeng Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document