The Aryl Hydrocarbon Receptor (AhR) as an Environmental Stress Sensor and Regulator of Skin Barrier Function: Molecular Mechanisms and Therapeutic Opportunities

2016 ◽  
pp. 325-359
Author(s):  
Rebecca Justiniano ◽  
Georg T. Wondrak
Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 249 ◽  
Author(s):  
Kim ◽  
Seong ◽  
Choung

Morinda citrifolia, a fruit generally known as “Noni”, has been traditionally used in parts of East Asia to relieve inflammatory diseases. Although several studies using noni have been reported, the effect of fermented Morinda citrifolia (F.NONI) on atopic dermatitis (AD) has not been investigated. Thus, we aimed to investigate the improving effect of F.NONI treatment on AD-like skin lesions and elucidate molecular mechanisms. F.NONI was prepared by the fermentation of noni fruit with probiotics and then extracted. F.NONI was orally administrated to NC/Nga mice to evaluate its therapeutic effect on 2,4-dinitrochlorobenzene (DNCB)-induced AD. Oral administration of F.NONI significantly alleviated AD lesions and symptoms such as dermatitis scores, ear thickness, scratching behavior, epidermal thickness, and infiltration of inflammatory cells (e.g., mast cells and eosinophils). In addition, F.NONI treatment reduced the levels of histamine, IgE and IgG1/IgG2a ratio, thymus and activation regulated chemokine (TARC), and thymic stromal lymphopoietin (TSLP) in serum and beneficially modulated the expressions of Th1, Th2, Th17, and Th22-mediated cytokines in lesioned skin and splenocytes. Furthermore, the expressions of the skin barrier-related proteins including filaggrin (FLG), loricrin (LOR), involucrin (IVL), zonula occludens-1 (ZO-1), and occludin (OCC) were restored by F.NONI treatment. Taken together, these results suggest that F.NONI could be a therapeutic agent to attenuate AD-like skin lesions through modulating the immune balance and skin barrier function.


2020 ◽  
Author(s):  
Aayushi Uberoi ◽  
Casey Bartow-McKenney ◽  
Qi Zheng ◽  
Laurice Flowers ◽  
Amy Campbell ◽  
...  

SUMMARYThe epidermis forms a barrier that defends the body from desiccation and entry of harmful substances, while sensing and integrating environmental signals. The tightly orchestrated cellular changes required for the proper formation and maintenance of this epidermal barrier occur in the context of the skin microbiome. Using germ free mice, we demonstrate the microbiota is necessary for proper differentiation and repair of the epidermal barrier. These effects were mediated by the aryl hydrocarbon receptor (AHR) in keratinocytes, a xenobiotic receptor also implicated in epidermal differentiation. Murine skin lacking keratinocyte AHR was more susceptible to barrier damage and infection, during steady state and epicutaneous sensitization. Colonization with a defined consortium of human skin isolates restored barrier competence in an AHR-dependent manner. We reveal a fundamental mechanism whereby the microbiota regulates skin barrier formation and repair, with far-reaching implications for the numerous skin disorders characterized by epidermal barrier dysfunction.


Sign in / Sign up

Export Citation Format

Share Document