commensal microbiota
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 141)

H-INDEX

48
(FIVE YEARS 10)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Tadashi Maeda ◽  
Hiroaki Zai ◽  
Yuto Fukui ◽  
Yoshifumi Kato ◽  
Eri Kumade ◽  
...  

Abstract Background The bioactivities of commensal duodenal microbiota greatly influence the biofunction of hosts. We investigated the role of Helicobacter pylori infection in extra-gastroduodenal diseases by determining the impact of H. pylori infection on the duodenal microbiota. We sequenced 16 S rRNA genes in samples aspirated from the descending duodenum of 47 (male, 20; female, 27) individuals who were screened for gastric cancer. Samples were analysed using 16 S rRNA gene amplicon sequencing, and the LEFSe and Kyoto Encyclopaedia of Genes and Genomes methods were used to determine whether the duodenal microflora and microbial biofunctions were affected using H. pylori infection. Results Thirteen and 34 participants tested positive and negative for H. pylori, respectively. We identified 1,404 bacterial operational taxonomic units from 23 phyla and 253 genera. H. pylori infection changed the relative mean abundance of three phyla (Proteobacteria, Actinobacteria, and TM7) and ten genera (Neisseria, Rothia, TM7-3, Leptotrichia, Lachnospiraceae, Megasphaera, F16, Moryella, Filifactor, and Paludibacter). Microbiota features were significantly influenced in H. pylori-positive participants by 12 taxa mostly classified as Gammaproteobacteria. Microbial functional annotation revealed that H. pylori significantly affected 12 microbial metabolic pathways. Conclusions H. pylori disrupted normal bacterial communities in the duodenum and changed the biofunctions of commensal microbiota primarily by upregulating specific metabolic pathways. Such upregulation may be involved in the onset of diseases associated with H. pylori infection.


2022 ◽  
Vol 119 (3) ◽  
pp. e2115230119
Author(s):  
Mariko Kamioka ◽  
Yoshiyuki Goto ◽  
Kiminori Nakamura ◽  
Yuki Yokoi ◽  
Rina Sugimoto ◽  
...  

Paneth cells are intestinal epithelial cells that release antimicrobial peptides, such as α-defensin as part of host defense. Together with mesenchymal cells, Paneth cells provide niche factors for epithelial stem cell homeostasis. Here, we report two subtypes of murine Paneth cells, differentiated by their production and utilization of fucosyltransferase 2 (Fut2), which regulates α(1,2)fucosylation to create cohabitation niches for commensal bacteria and prevent invasion of the intestine by pathogenic bacteria. The majority of Fut2− Paneth cells were localized in the duodenum, whereas the majority of Fut2+ Paneth cells were in the ileum. Fut2+ Paneth cells showed higher granularity and structural complexity than did Fut2− Paneth cells, suggesting that Fut2+ Paneth cells are involved in host defense. Signaling by the commensal bacteria, together with interleukin 22 (IL-22), induced the development of Fut2+ Paneth cells. IL-22 was found to affect the α-defensin secretion system via modulation of Fut2 expression, and IL-17a was found to increase the production of α-defensin in the intestinal tract. Thus, these intestinal cytokines regulate the development and function of Fut2+ Paneth cells as part of gut defense.


2022 ◽  
pp. 37-74
Author(s):  
Weilan Wang ◽  
◽  
Tingting Ju ◽  
Michael G. Gänzle ◽  
◽  
...  

Vertebrate animals are holobionts and their physiology and metabolism are influenced by their commensal microbiota. Gut microbiota and their metabolites play a key role in the host defense against pathogenic microorganisms, shape the immune system, and impact the resistance to chronic disease. The metabolic activity of intestinal microbiota contributes significantly to the conversion of diet components to molecules that can be absorbed and metabolized by the host. The metabolic capacity of the intestinal microbiota by far exceeds the metabolic capacity of the hosts. Collectively, gut microbes support the digestion of the major nutrients, i.e. carbohydrates, proteins and lipids, and impact uptake and conversion of micronutrients, e.g. phenolic compounds and minerals. This chapter provides an overview on the metabolism of carbohydrates and bile salts by pig microbiota.


2022 ◽  
Author(s):  
Juan Manuel Palma-Hidalgo ◽  
Alejandro Belanche ◽  
Elisabeth Jiménez ◽  
A. Ignacio Martín-García ◽  
Charles J. Newbold ◽  
...  

Abstract Ruminants are able to produce large quantities of saliva which enter into the rumen. Although previous research has indicated that salivary immunoglobulins can partially modulate the rumen microbial activity, the role of the salivary components other than ions on the rumen microbial ecosystem has not been thoroughly investigated in ruminants. A total of 16 semi-continuous in vitro cultures were used to incubate rumen fluid from 4 donor goats inoculated with autoclaved saliva (AUT) as negative control, saliva from the same rumen fluid donor (OWN) as positive control, and either GOAT or SHEEP saliva as experimental interventions. Fermentation was monitored throughout the 7 days of incubation and the prokaryotic communities and metabolome were analysed at day 7 of incubation. Characterization of the salivas used prior to incubation showed a high degree of individual variability in terms of the salivary metabolites and proteins, including immunoglobulins. The prokaryotic community composition in AUT incubators was the most divergent across treatments, suggesting a modulatory effect of active salivary components, which were not affected in the other treatments (OWN, GOAT and SHEEP). The differences across treatments in microbial diversity were mostly caused by a greater abundance of Proteobacteria and Rikenellacea and lower of Prevotellaceae, a key rumen bacterium with greater abundance in GOAT and SHEEP treatments. These results suggest that specific salivary components contribute to host-associated role in selecting the rumen commensal microbiota and its activity.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 126
Author(s):  
Annalisa Bosi ◽  
Davide Banfi ◽  
Michela Bistoletti ◽  
Paola Moretto ◽  
Elisabetta Moro ◽  
...  

The commensal microbiota plays a fundamental role in maintaining host gut homeostasis by controlling several metabolic, neuronal and immune functions. Conversely, changes in the gut microenvironment may alter the saprophytic microbial community and function, hampering the positive relationship with the host. In this bidirectional interplay between the gut microbiota and the host, hyaluronan (HA), an unbranched glycosaminoglycan component of the extracellular matrix, has a multifaceted role. HA is fundamental for bacterial metabolism and influences bacterial adhesiveness to the mucosal layer and diffusion across the epithelial barrier. In the host, HA may be produced and distributed in different cellular components within the gut microenvironment, playing a role in the modulation of immune and neuronal responses. This review covers the more recent studies highlighting the relevance of HA as a putative modulator of the communication between luminal bacteria and the host gut neuro-immune axis both in health and disease conditions, such as inflammatory bowel disease and ischemia/reperfusion injury.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sadia Ahmed ◽  
Sierrah D. Travis ◽  
Francisca V. Díaz-Bahamonde ◽  
Demisha D. L. Porter ◽  
Sara N. Henry ◽  
...  

Abnormalities in the prefrontal cortex (PFC), as well as the underlying white matter (WM) tracts, lie at the intersection of many neurodevelopmental disorders. The influence of microorganisms on brain development has recently been brought into the clinical and research spotlight as alterations in commensal microbiota are implicated in such disorders, including autism spectrum disorders, schizophrenia, depression, and anxiety via the gut-brain axis. In addition, gut dysbiosis is common in preterm birth patients who often display diffuse WM injury and delayed WM maturation in critical tracts including those within the PFC and corpus callosum. Microbial colonization of the gut aligns with ongoing postnatal processes of oligodendrogenesis and the peak of brain myelination in humans; however, the influence of microbiota on gyral WM development remains elusive. Here, we develop and validate a neonatal germ-free swine model to address these issues, as piglets share key similarities in WM volume, developmental trajectories, and distribution to humans. We find significant region-specific reductions, and sexually dimorphic trends, in WM volume, oligodendrogenesis, and mature oligodendrocyte numbers in germ-free piglets during a key postnatal epoch of myelination. Our findings indicate that microbiota plays a critical role in promoting WM development during early life when the brain is vulnerable to environmental insults that can result in an array of disabilities manifesting later in life.


2021 ◽  
Vol 12 ◽  
Author(s):  
Francesca Berini ◽  
Viviana Teresa Orlandi ◽  
Federica Gamberoni ◽  
Eleonora Martegani ◽  
Ilaria Armenia ◽  
...  

In the era of antimicrobial resistance, the use of nanoconjugated antibiotics is regarded as a promising approach for preventing and fighting infections caused by resistant bacteria, including those exacerbated by the formation of difficult-to-treat bacterial biofilms. Thanks to their biocompatibility and magnetic properties, iron oxide nanoparticles (IONPs) are particularly attractive as antibiotic carriers for the targeting therapy. IONPs can direct conjugated antibiotics to infection sites by the use of an external magnet, facilitating tissue penetration and disturbing biofilm formation. As a consequence of antibiotic localization, a decrease in its administration dosage might be possible, reducing the side effects to non-targeted organs and the risk of antibiotic resistance spread in the commensal microbiota. Here, we prepared nanoformulations of the ‘last-resort’ glycopeptides teicoplanin and vancomycin by conjugating them to IONPs via surface functionalization with (3-aminopropyl) triethoxysilane (APTES). These superparamagnetic NP-TEICO and NP-VANCO were chemically stable and NP-TEICO (better than NP-VANCO) conserved the typical spectrum of antimicrobial activity of glycopeptide antibiotics, being effective against a panel of staphylococci and enterococci, including clinical isolates and resistant strains. By a combination of different methodological approaches, we proved that NP-TEICO and, although to a lesser extent, NP-VANCO were effective in reducing biofilm formation by three methicillin-sensitive or resistant Staphylococcus aureus strains. Moreover, when attracted and concentrated by the action of an external magnet, NP-TEICO exerted a localized inhibitory effect on S. aureus biofilm formation at low antibiotic concentration. Finally, we proved that the conjugation of glycopeptide antibiotics to IONPs reduced their intrinsic cytotoxicity toward a human cell line.


2021 ◽  
Vol 157 ◽  
pp. 106811
Author(s):  
Marja I. Roslund ◽  
Riikka Puhakka ◽  
Noora Nurminen ◽  
Sami Oikarinen ◽  
Nathan Siter ◽  
...  

Author(s):  
Mayumi Ueta ◽  
Koji Hosomi ◽  
Jonguk Park ◽  
Kenji Mizuguchi ◽  
Chie Sotozono ◽  
...  

The commensal microbiota is involved in a variety of diseases. Our group has noticed that patients with Stevens–Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) often present with persistent inflammation of the ocular surface, even in the chronic stage, and that this inflammation is exacerbated by colonization of the mucosa by certain bacteria. However, the changes in the composition of the ocular microbiome in SJS/TEN patients with severe ocular complications (SOCs) remain to be fully investigated. Here, we conducted a cross-sectional study of 46 Japanese subjects comprising 9 healthy control subjects and 37 SJS/TEN patients with SOC. The 16S rRNA-based genetic analyses revealed that the diversity of the ocular microbiome was reduced in SJS/TEN patients with SOC compared with that in healthy control subjects. Principal coordinate analysis based on Bray–Curtis distance at the genus level revealed that the relative composition of the ocular microbiome was different in healthy control subjects and SJS/TEN patients with SOC, and that the SJS/TEN patients with SOC could be divided into four groups based on whether their microbiome was characterized by enrichment of species in genus Corynebacterium 1, Neisseriaceae uncultured, or Staphylococcus or by simultaneous enrichment in species in genera Propionibacterium, Streptococcus, Fusobacterium, Lawsonella, and Serratia. Collectively, our findings indicate that enrichment of certain bacteria at the ocular surface could be associated with ocular surface inflammation in SJS/TEN patients with SOC.


2021 ◽  
Vol 14 (11) ◽  
pp. 1181
Author(s):  
Eirini Filidou ◽  
George Kolios

Inflammatory bowel disease (IBD), Crohn’s disease, and ulcerative colitis are characterized by chronic and relapsing inflammation, while their pathogenesis remains mostly unelucidated. Gut commensal microbiota seem to be one of the various implicated factors, as several studies have shown a significant decrease in the microbiome diversity of patients with IBD. Although the question of whether microbiota dysbiosis is a causal factor or the result of chronic inflammation remains unanswered, one fact is clear; active inflammation in IBD results in the disruption of the mucus layer structure, barrier function, and also, colonization sites. Recently, many studies on IBD have been focusing on the interplay between mucosal and luminal microbiota, underlining their possible beneficial effect on mucosal healing. Regarding this notion, it has now been shown that specific probiotic strains, when administrated, lead to significantly decreased inflammation, amelioration of colitis, and improved mucosal healing. Probiotics are live microorganisms exerting beneficial effects on the host’s health when administered in adequate quantity. The aim of this review was to present and discuss the current findings on the role of gut microbiota and their metabolites in intestinal wound healing and the effects of probiotics on intestinal mucosal wound closure.


Sign in / Sign up

Export Citation Format

Share Document