scholarly journals Fermented Morinda citrifolia (Noni) Alleviates DNCB-Induced Atopic Dermatitis in NC/Nga Mice through Modulating Immune Balance and Skin Barrier Function

Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 249 ◽  
Author(s):  
Kim ◽  
Seong ◽  
Choung

Morinda citrifolia, a fruit generally known as “Noni”, has been traditionally used in parts of East Asia to relieve inflammatory diseases. Although several studies using noni have been reported, the effect of fermented Morinda citrifolia (F.NONI) on atopic dermatitis (AD) has not been investigated. Thus, we aimed to investigate the improving effect of F.NONI treatment on AD-like skin lesions and elucidate molecular mechanisms. F.NONI was prepared by the fermentation of noni fruit with probiotics and then extracted. F.NONI was orally administrated to NC/Nga mice to evaluate its therapeutic effect on 2,4-dinitrochlorobenzene (DNCB)-induced AD. Oral administration of F.NONI significantly alleviated AD lesions and symptoms such as dermatitis scores, ear thickness, scratching behavior, epidermal thickness, and infiltration of inflammatory cells (e.g., mast cells and eosinophils). In addition, F.NONI treatment reduced the levels of histamine, IgE and IgG1/IgG2a ratio, thymus and activation regulated chemokine (TARC), and thymic stromal lymphopoietin (TSLP) in serum and beneficially modulated the expressions of Th1, Th2, Th17, and Th22-mediated cytokines in lesioned skin and splenocytes. Furthermore, the expressions of the skin barrier-related proteins including filaggrin (FLG), loricrin (LOR), involucrin (IVL), zonula occludens-1 (ZO-1), and occludin (OCC) were restored by F.NONI treatment. Taken together, these results suggest that F.NONI could be a therapeutic agent to attenuate AD-like skin lesions through modulating the immune balance and skin barrier function.

2021 ◽  
Vol 23 (1) ◽  
pp. 226
Author(s):  
Jin-Su Oh ◽  
Geum-Su Seong ◽  
Yong-Deok Kim ◽  
Se-Young Choung

The prevalence of atopic dermatitis (AD), a disease characterized by severe pruritus, immune imbalance, and skin barrier dysfunction, is rapidly increasing worldwide. Deacetylasperulosidic acid (DAA) has anti-atopic activity in the three main cell types associated with AD: keratinocytes, mast cells, and eosinophils. Our study investigated the anti-atopic activity of DAA in 2,4-dinitrochlorobenzene-induced NC/Nga mice. DAA alleviated the symptoms of AD, including infiltration of inflammatory cells (mast cells and eosinophils), epidermal thickness, ear thickness, and scratching behavior. Furthermore, DAA reduced serum IgE, histamine, and IgG1/IgG2a ratio and modulated the levels of AD-related cytokines and chemokines, namely interleukin (IL)-1β, IL-4, IL-6, IL-9, IL-10, IL-12, tumor necrosis factor-α, interferon-γ, thymic stromal lymphopoietin, thymus and activation-regulated chemokine, macrophage-derived chemokine, and regulated on activation the normal T cell expressed and secreted in the serum. DAA restored immune balance by regulating gene expression and secretion of Th1-, Th2-, Th9-, Th17-, and Th22-mediated inflammatory factors in the dorsal skin and splenocytes and restored skin barrier function by increasing the expression of the pro-filaggrin gene and barrier-related proteins filaggrin, involucrin, and loricrin. These results suggest DAA as a potential therapeutic agent that can alleviate the symptoms of AD by reducing pruritus, modulating immune imbalance, and restoring skin barrier function.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3298
Author(s):  
Jin Su Oh ◽  
Geum Su Seong ◽  
Yong Deok Kim ◽  
Se Young Choung

The medicinal plant noni (Morinda citrifolia) is widely dispersed throughout Southeast Asia, the Caribbean, and Australia. We previously reported that fermented Noni could alleviate atopic dermatitis (AD) by recovering Th1/Th2 immune balance and enhancing skin barrier function induced by 2,4-dinitrochlorobenzene. Noni has a high deacetylasperulosidic acid (DAA) content, whose concentration further increased in fermented noni as an iridoid constituent. This study aimed to determine the anti-AD effects and mechanisms of DAA on HaCaT, HMC-1, and EOL-1 cells. DAA inhibited the gene expression and secretion of AD-related cytokines and chemokines including interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-25, IL-33, thymic stromal lymphopoietin, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, thymus and activation-regulated chemokine, macrophage-derived chemokine, and regulated upon activation, normal T cell expressed and secreted, in all cells, and inhibited histamine release in HMC-1 cells. DAA controlled mitogen-activated protein kinase phosphorylation levels and the translocation of nuclear factor-kappa light chain enhancer of activated B cells into the nucleus by inhibiting IκBα decomposition in all the cells. Furthermore, DAA increased the expression of proteins involved in skin barrier functions such as filaggrin and involucrin in HaCaT cells. These results confirmed that DAA could relieve AD by controlling immune balance and recovering skin barrier function.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2016
Author(s):  
Jonghwan Jegal ◽  
No-June Park ◽  
Beom-Geun Jo ◽  
Tae-Young Kim ◽  
Sim-Kyu Bong ◽  
...  

Plants of the genus Wikstroemia are used in Chinese traditional medicine to treat inflammatory diseases, such as arthritis, bronchitis, and pneumonia. The present study was designed to determine whether Wikstroemia ganpi (Siebold and Zucc.) Maxim. offers a potential means of treating 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) in mice. Symptoms such as redness, edema, and keratinization in AD mice induced by DNCB were alleviated by the co-application of an ethanolic extract of W. ganpi for 2 weeks. The severity of skin barrier function damage was evaluated by measuring TEWL (transepidermal water loss). TEWLs of DNCB sensitized mouse dorsal skin were reduced by the application of a W. ganpi ethanolic extract, and skin hydration was increased. In addition, the infiltration of inflammatory cells into the dermis was significantly reduced, as were blood levels of IgE and IL-4, which play an important role in the expression of AD. The results of this experiment suggest that W. ganpi is a potential therapeutic agent for AD.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 750
Author(s):  
Ui Seok Kim ◽  
Jin Woo Park ◽  
Eon Sub Park ◽  
Joon Seok Bang ◽  
Tae Woo Jung ◽  
...  

This study aimed to restore the skin barrier function from atopic dermatitis (AD) via treatment with leucine-rich glioma inactivated 3 (LGI3) peptide. Male NC/Nga mice (7 weeks, 20 g) were randomly allocated into three groups (control, AD, and LGI3 group). After induction of AD skin lesions with Dermatophagoides farinae ointment, mice were treated with LGI3. The clinical score of AD was the highest and the dorsal skin thickness was the thickest in the AD group. In contrast, LGI3 treatment improved the clinical score and the dorsal skin thickness compared to the AD model. LGI3 treatment suppressed histopathological thickness of the epithelial cell layer of the dorsal skin. LGI3 treatment could indirectly reduce mast cell infiltration through restoring the barrier function of the skin. Additionally, the filaggrin expression was increased in immunohistochemical evaluation. In conclusion, the ameliorating effect and maintaining skin barrier homeostasis in the AD murine model treated with LGI3 could be attributed to complete re-epithelialization of keratinocytes. Hence, LGI3 might be considered as a new potential therapeutic target for restoring skin barrier function in AD.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 914 ◽  
Author(s):  
Jonghwan Jegal ◽  
No-June Park ◽  
Tae-Young Kim ◽  
Sangho Choi ◽  
Sang Woo Lee ◽  
...  

Plants of the genus Wikstroemia are traditionally used to treat inflammatory diseases like bronchitis and rheumatoid arthritis. In the present study, the anti-atopic effects of an EtOH extract of Wikstroemia dolichantha (WDE) on oxazolone- and DNCB (2,4-dinitrochlorobenzene)-induced dermatitis in mice were investigated. Both ears of BALB/c mice were exposed to oxazolone, and dorsal skins of SKH-1 hairless mice were sensitized with DNCB to induce acute eczematous atopic skin lesions. 1% WDE was applied daily to oxazolone- and DNCB-induced AD mice for two or three weeks, respectively. Total IL-4 and IgE concentrations in serum, transepidermal water loss (TEWL) and skin hydration were assessed. High-performance liquid chromatography/mass spectrometry (HPLC/MS) was used to determine the composition of WDE. Dermal application of 1% WDE grossly and histopathologically improved oxazolone- and DNCB-induced AD skin symptoms. Epidermal thickness and mast cell infiltration were significantly lower in animals treated with WDE than in vehicle controls. Furthermore, in addition to reducing DNCB-induced increases in serum IL-4 (interleukin 4) and IgE (immunoglobulin E) levels, WDE also decreased TEWL and increased skin hydration (indicative of improved skin barrier function). The four flavonoids taxifolin, aromadendrin, padmatin and chamaejasmine were tentatively identified in WDE by HPLC-DAD/QTOF-MS. The above results show WDE protected against oxazolone- and DNCB-induced AD in mice by down-regulating the TH2-associated cytokine IL-4 and improving skin barrier function and suggest WDE might be useful for the management of atopic dermatitis.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3209
Author(s):  
Jin-Su Oh ◽  
Sang-Jun Lee ◽  
Se-Young Choung

The incidence of atopic dermatitis (AD), a disease characterized by an abnormal immune balance and skin barrier function, has increased rapidly in developed countries. This study investigated the anti-atopic effect of Lithospermum erythrorhizon (LE) using NC/Nga mice induced by 2,4-dinitrochlorobenzene. LE reduced AD clinical symptoms, including inflammatory cell infiltration, epidermal thickness, ear thickness, and scratching behavior, in the mice. Additionally, LE reduced serum IgE and histamine levels, and restored the T helper (Th) 1/Th2 immune balance through regulation of the IgG1/IgG2a ratio. LE also reduced the levels of AD-related cytokines and chemokines, including interleukin (IL)-1β, IL-4, IL-6, tumor necrosis factor-α (TNF-α), thymic stromal lymphopoietin, thymus and activation-regulated chemokine, macrophage-derived chemokine, regulated on activation, normal T cell expressed and secreted, and monocyte chemoattractant protein-1 in the serum. Moreover, LE modulated AD-related cytokines and chemokines expressed and secreted by Th1, Th2, Th17, and Th22 cells in the dorsal skin and splenocytes. Furthermore, LE restored skin barrier function by increasing pro-filaggrin gene expression and levels of skin barrier-related proteins filaggrin, involucrin, loricrin, occludin, and zonula occludens-1. These results suggest that LE is a potential therapeutic agent that can alleviate AD by modulating Th1/Th2 immune balance and restoring skin barrier function.


Sign in / Sign up

Export Citation Format

Share Document