Evidential Correlated Gaussian Mixture Markov Model for Pixel Labeling Problem

Author(s):  
Lin An ◽  
Ming Li ◽  
Mohamed El Yazid Boudaren ◽  
Wojciech Pieczynski
Author(s):  
Li Zhao ◽  
Laurence Rilett ◽  
Mm Shakiul Haque

This paper develops a methodology for simultaneously modeling lane-changing and car-following behavior of automated vehicles on freeways. Naturalistic driving data from the Safety Pilot Model Deployment (SPMD) program are used. First, a framework to process the SPMD data is proposed using various data analytics techniques including data fusion, data mining, and machine learning. Second, pairs of automated host vehicle and their corresponding front vehicle are identified along with their lane-change and car-following relationship data. Using these data, a lane-changing-based car-following (LCCF) model, which explicitly considers lane-change and car-following behavior simultaneously, is developed. The LCCF model is based on Gaussian-mixture-based hidden Markov model theory and is disaggregated into two processes: LCCF association and LCCF dissociation. These categories are based on the result of the lane change. The overall goal is to predict a driver’s lane-change intention using the LCCF model. Results show that the model can predict the lane-change event in the order of 0.6 to 1.3 s before the moment of the vehicle body across the lane boundary. In addition, the execution times of lane-change maneuvers average between 0.55 and 0.86 s. The LCCF model allows the intention time and execution time of driver’s lane-change behavior to be forecast, which will help to develop better advanced driver assistance systems for vehicle controls with respect to lane-change and car-following warning functions.


2021 ◽  
Vol 11 (7) ◽  
pp. 3138
Author(s):  
Mingchi Zhang ◽  
Xuemin Chen ◽  
Wei Li

In this paper, a deep neural network hidden Markov model (DNN-HMM) is proposed to detect pipeline leakage location. A long pipeline is divided into several sections and the leakage occurs in different section that is defined as different state of hidden Markov model (HMM). The hybrid HMM, i.e., DNN-HMM, consists of a deep neural network (DNN) with multiple layers to exploit the non-linear data. The DNN is initialized by using a deep belief network (DBN). The DBN is a pre-trained model built by stacking top-down restricted Boltzmann machines (RBM) that compute the emission probabilities for the HMM instead of Gaussian mixture model (GMM). Two comparative studies based on different numbers of states using Gaussian mixture model-hidden Markov model (GMM-HMM) and DNN-HMM are performed. The accuracy of the testing performance between detected state sequence and actual state sequence is measured by micro F1 score. The micro F1 score approaches 0.94 for GMM-HMM method and it is close to 0.95 for DNN-HMM method when the pipeline is divided into three sections. In the experiment that divides the pipeline as five sections, the micro F1 score for GMM-HMM is 0.69, while it approaches 0.96 with DNN-HMM method. The results demonstrate that the DNN-HMM can learn a better model of non-linear data and achieve better performance compared to GMM-HMM method.


2012 ◽  
Vol 468-471 ◽  
pp. 2720-2723
Author(s):  
Yang Zhang ◽  
You Cheng Tong ◽  
Jun Zhou Yao

To improve the accuracy and efficiency of fabric design CAD, a wavelet-domain Markov model to image texture segmentation from a natural framework for intergrating both local and global information of jacquard fabric image behavior, together with contextual information.Firstly the Daubechies wavelet and tree-structure is selected, then the approach decomposes the low frequency part of the jacquard fabric image. Secondly within the theoretical framework of Markov random field, we construct the grey field distribution model and label field prior model with finite Gaussian mixture algorithm and multi-level logistic algorithm respectively. The experiments for almost 30 warp knitting jacquard fabric images show that this approach is a feasible way for jacquard fabric, and it supplies a theoretical platform for subsequent research.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 817 ◽  
Author(s):  
Ahmad Jalal ◽  
Nida Khalid ◽  
Kibum Kim

Automatic identification of human interaction is a challenging task especially in dynamic environments with cluttered backgrounds from video sequences. Advancements in computer vision sensor technologies provide powerful effects in human interaction recognition (HIR) during routine daily life. In this paper, we propose a novel features extraction method which incorporates robust entropy optimization and an efficient Maximum Entropy Markov Model (MEMM) for HIR via multiple vision sensors. The main objectives of proposed methodology are: (1) to propose a hybrid of four novel features—i.e., spatio-temporal features, energy-based features, shape based angular and geometric features—and a motion-orthogonal histogram of oriented gradient (MO-HOG); (2) to encode hybrid feature descriptors using a codebook, a Gaussian mixture model (GMM) and fisher encoding; (3) to optimize the encoded feature using a cross entropy optimization function; (4) to apply a MEMM classification algorithm to examine empirical expectations and highest entropy, which measure pattern variances to achieve outperformed HIR accuracy results. Our system is tested over three well-known datasets: SBU Kinect interaction; UoL 3D social activity; UT-interaction datasets. Through wide experimentations, the proposed features extraction algorithm, along with cross entropy optimization, has achieved the average accuracy rate of 91.25% with SBU, 90.4% with UoL and 87.4% with UT-Interaction datasets. The proposed HIR system will be applicable to a wide variety of man–machine interfaces, such as public-place surveillance, future medical applications, virtual reality, fitness exercises and 3D interactive gaming.


Sign in / Sign up

Export Citation Format

Share Document